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ABSTRACT
Accurately maintaining digital street maps is labor-intensive. To
address this challenge, much work has studied automatically pro-
cessing geospatial data sources such as GPS trajectories and satellite
images to reduce the cost of maintaining digital maps. An end-to-
end map update system would first process geospatial data sources
to extract insights, and second leverage those insights to update and
improve the map. However, prior work largely focuses on the first
step of this pipeline: these map extraction methods infer road net-
works from scratch given geospatial data sources (in effect creating
entirely newmaps), but do not address the second step of leveraging
this extracted information to update the existing digital map data.
In this paper, we first explain why current map extraction tech-
niques yield low accuracy when extended to update existing maps.
We then propose a novel method that leverages the progression of
satellite imagery over time to substantially improve accuracy. Our
approach first compares satellite images captured at different times
to identify portions of the physical road network that have visibly
changed, and then updates the existing map accordingly. We show
that our change-based approach reduces map update error rates
four-fold.
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1 INTRODUCTION
Maintaining street maps is a labor-intensive process. As a result,
many techniques have been proposed to automate parts of this
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process by using geospatial data sources. Current map extraction
techniques [2, 4, 8, 10, 19, 21, 26] primarily rely on satellite im-
agery due to its global availability, while some techniques use GPS
trajectories.

A key problem with current techniques is that they are designed
to infer road networks from scratch — however, given that we
already have existing high quality maps that cover the vast majority
of the world, these inferred road networks are not directly useful.
Instead, an end-to-end map update system must process geospatial
data sources to update and improve existing digital maps.

1.1 Map Extraction Methods Perform Poorly
on Map Update

We first consider extending current map extraction techniques for
updating maps. We will show that these methods perform poorly
on map update, creating many false positive updates.

Suppose that the current live digital map has a set of roads 𝑅.
We begin by applying a map extraction method to process the
most recent satellite imagery (spanning the world). This method
produces another set of roads 𝑇 detected in the satellite imagery.
Simply replacing 𝑅 with𝑇 would not be sensible for several reasons:

(1) For roads that appear in both 𝑅 and𝑇 , given that 𝑅 is largely
human-curated, it captures those roads substantially more
accurately than 𝑇 .

(2) 𝑅 includes roads such as tunnels that cannot be detected by
the map extraction method.

(3) Roads in 𝑅 are labeled with rich annotations such as street
names, speed limits, etc. that would be lost in the replace-
ment.

We could instead try to combine 𝑅 and 𝑇 : if for a road segment
𝑠 , 𝑠 ∉ 𝑅 and 𝑠 ∈ 𝑇 , we add 𝑠 to the map. (We could also remove
segments 𝑠 where 𝑠 ∈ 𝑅 and 𝑠 ∉ 𝑇 , but this would prune roads
that are not visible in the satellite image such as tunnels and roads
occluded by buildings or trees, so we do not consider it further.)

However, in practice, this approach yields a large number of
false positives, where the map extraction method erroneously out-
puts many road segments in places where there are no roads. We
demonstrate this issue by using a state-of-the-art inference method,
MAiD [3], to update OpenStreetMap [14]. We select a region of
Massachusetts where OpenStreetMap has high coverage, and man-
ually remove 204 groups of roads from the map that correspond
to new construction between 2015 and 2017. We apply MAiD to
recover these removed roads, and score its performance in terms
of precision and recall comparing recovered groups of roads to the
manually removed groups. At 80% recall, MAiD yields only 67%
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Figure 1: False positive detections when using MAiD to up-
date OpenStreetMap. We show new 2017 imagery, in which
the model erroneously detects roads, on the right. We in-
clude older 2015 imagery on the left to show how change
detection can reduce false positives — all of these false posi-
tives could have been eliminated by comparing satellite im-
ages over time, and determining that these are not recent
road network changes.

precision — far too low for full automation to be a realistic option.
We show examples of incorrect detections in Figure 1.

Many of these detections, such as the Runway, Walkway, and
Crop Field examples in Figure 1, arise due to paths that are vir-
tually indistinguishable from roads: it is restrictions set by policy
governing the use of those paths, and not physical characteristics
of the paths, that make them unsuitable for traversal by motor
vehicles. Thus, simply improving the machine learning techniques
and models used in map extraction methods is unlikely to improve
accuracy; instead, a fundamental shift in approach is required.

1.2 Key Tasks in Maintaining Maps
To determine how accuracy can be improved, we first take a step
back and identify the major challenges associated with maintaining
maps. In particular, digital maps have near-complete coverage in
most parts of the world: a 2015 study1 found that, in 154 of 233
considered countries and territories, the length of roads in Open-
StreetMap exceeded the estimated road network length reported in
the CIA World Factbook, implying that the map provided excellent
coverage in those countries. Then, given that digital maps have
good coverage, identifying pre-existing roads constructed several
years ago is not a key issue: in almost all cases, such roads already
appear in the map.

Instead, the key challenge in maintaining maps is keeping the map
up-to-date with changes in the physical road network. Indeed, in the

1See https://blog.mapbox.com/how-complete-is-openstreetmap-7c369787af6e.

US alone, an estimated 30K km of roads are constructed each year2,
and map vendors spend hundreds of millions of dollars annually to
keep maps up-to-date.

This presents the question: Can we develop techniques that di-
rectly tackle the key challenge of identifying physical road network
changes, to substantially improve accuracy at maintaining maps
over map extraction methods?

1.3 Map Update through Change Detection
To substantially improve accuracy, we propose leveraging a source
of data largely overlooked in prior work: the progression of satellite
imagery over time. By comparing satellite images captured at dif-
ferent times, we can hone in on portions of the road network that
visibly changed over the satellite image time series. Focusing on
segments that visibly changed over time enables us to disambiguate
false positive road segments from genuinely new constructions: for
example, all of the false positive detections in Figure 1 arose from
curvilinear features such as walkways and crop field paths that did
not undergo any recent change; thus, by processing the satellite
image time series, we can determine that these are pre-existing
features, and should not be added to the map.

To implement the proposed solution, we must detect changed
road segments across satellite images. However, most existing
change detection methods are fully supervised. They rely on col-
lecting annotated pairs of images where change has occurred. Since
newly constructed roads are rare relative to the size of the map,
collecting positive examples of new roads for such a dataset is te-
dious and costly. Additionally, the diversity in visual appearance of
roads makes change detection especially challenging. Furthermore,
in Section 4, we show that prior work in unsupervised change
detection exhibits low accuracy when applied for detecting new
construction.

Instead, we develop a two-stage approach that requires no hand-
labeling for comparing satellite images over time to detect new
roads. In the first stage, we apply a novel change-seeking iterative
tracing procedure to detect recently constructed roads that are
missing from the existing map. Our method uses ground-truth road
labels derived from the existing map dataset to avoid needing new
annotations, and detects new roads that appear in an up-to-date
satellite image but are not visible in an old image.

Though the first stage is effective at detecting new construction,
it nevertheless yields false positive detections when occlusion and
other factors yield visual differences between the old and up-to-
date images despite no actual change. Thus, in the second stage,
we propose a novel self-supervised change detection approach to
further improve precision. We train a CNN to classify whether win-
dows of two aligned satellite images captured at different times are
cropped at the same window (matching) or at different windows
(mismatched). The CNN learns to match features like road markers
to determine whether two crops are matching or mismatched. To
apply the model for inference, we provide it with matching crop
pairs around roads detected through tracing, and we only retain de-
tections that fool the model into classifying the pair as mismatched,
suggesting the presence of new construction.

2“Public Road Mielage”, FHWA, https://www.fhwa.dot.gov/policyinformation/
statistics/2013/vmt422c.cfm.

https://blog.mapbox.com/how-complete-is-openstreetmap-7c369787af6e
https://www.fhwa.dot.gov/policyinformation/statistics/2013/vmt422c.cfm
https://www.fhwa.dot.gov/policyinformation/statistics/2013/vmt422c.cfm


Updating Street Maps using Changes Detected in Satellite Imagery SIGSPATIAL ’21, November 2–5, 2021, Beijing, China

We evaluate our approach on a large-scale dataset consisting of
4800 km2 of satellite imagery. We apply approaches to improve an
existing map dataset, OpenStreetMap, by adding newly constructed
roads to the map. At 50% recall, our approach reduces error rates
over existing state-of-the-art map inferencemethods four-fold, from
12% to 3%. Our code and data is available at https://favyen.com/
mapupdate.

In summary, our contributions are:

• We propose a novel approach for updating street maps that
leverages the progression of satellite imagery over time. In
contrast to prior work that focuses on inferring all roads in
a satellite image, our approach tackles the directly practical
map update problem.

• We develop a two-stage approach for detecting new con-
struction in satellite imagery. Our approach does not require
any hand-labeling. In the second stage, we propose a novel
self-supervised road-masking approach, where we train a
CNN classifier in a self-supervised manner to detect change.

• We evaluate our approach on a large-scale dataset consisting
of 3000 km2 of satellite imagery in the Boston area for train-
ing and 1800 km2 in northeastern Massachusetts for testing.
We apply approaches to improve an existing map dataset,
OpenStreetMap, by incorporating newly constructed roads
into the dataset. At 50% recall, our approach reduces error
rates over existing state-of-the-art map inference methods
four-fold, from 12% to 3%.

2 RELATEDWORK
Road Extraction. Automatically inferring roads from satellite im-
agery is a well-studied problem. Recent road extraction methods
generally apply convolutional neural networks (CNNs) to segment
imagery for roads [5, 10, 20, 21, 29, 30], and apply various methods
to post-process the segmentation output and derive vector road
network graphs. Cheng et al. apply binary thresholding, morpho-
logical thinning, and line following to extract a road network from
segmentation probabilities [8]. DeepRoadMapper [19] proposes
several additional heuristic and learning-based refinement steps,
including removing short edges and identifying potential missed
roads. Some methods propose alternatives to treating road extrac-
tion as an image segmentation problem. Alshehhi et al. build the
road network with a region adjacent graph that forms narrow elon-
gated regions along roads [2]. RoadTracer [4] and PolyMapper [18]
propose an iterative tracing framework to extract road networks:
they train a CNN to output the directionality of roads at each pixel,
and employ an iterative search guided by the CNN to trace the road
network. VecRoad extends the iterative tracing approach with a
flexible step size and joint learning tasks [25], and Neural Turtle
Graphics extends it with a sequential generative model [9]. Another
recent technique, Sat2Graph, proposes a one-shot road extraction
process where a CNN directly predicts the positions of road network
vertices and edges [16].

However, broadly, these approaches are unable to reason about
false positive detections made by the CNN such as those in Figure 1,
especially for paths that appear visually similar to roads in the satel-
lite image but are not suitable for traversal by motor vehicles. As a
result, when road extraction methods are applied for the practical

task of updating existing maps, they incorporate many non-road
paths into the map, thereby substantially deteriorating the quality
of the map data. In contrast, in most of the world where existing
maps have good coverage, our method accurately keeps maps up
to date with new construction by comparing satellite imagery over
time, and only updating the map in areas where change is detected
across images.
GPS Trajectories for Updating Maps. Inferring roads from GPS
trajectory data has also been studied [1, 6, 7, 11, 15, 22, 24]. Two
works in this space, CrowdAtlas [28] and COBWEB [23], propose
map update methods to incorporate new roads into existing maps.
However, since these methods do not consider GPS time series data
(comparing older trajectories to recent trajectories), they exhibit
false positive errors similar to satellite image road extraction meth-
ods due to GPS noise. Additionally, due to the lack of a ground truth
test set, prior work have not incorporated a quantitative evaluation
of the map update portion of those methods, and instead qualita-
tively show results at detecting a small number of roads missing
from an existing map. While it may be possible to accurately update
existing maps by comparing old and recent GPS trajectory data,
this has not been studied in prior work; in our approach, we focus
on using satellite image time series data, since satellite imagery is
globally available.
Change Detection. Change detection in satellite imagery has
previously been studied for detecting damage from natural dis-
asters and armed conflict. Gueguen et al. employ a semi-supervised
learning approach to identify damaged regions by comparing im-
ages before and after a calamity[13]. However, adapting supervised
and semi-supervised change detection methods for maintaining
maps is difficult: annotating examples of new roads is highly time-
consuming because the density of new construction is low. Unsuper-
vised change detection methods have also been proposed [12], but
we will show in Section 4 that these methods exhibit poor accuracy
when used to identify newly constructed roads.

3 DETECTING STREET NETWORK CHANGES
Existing state-of-the-art map inference methods are designed to
infer maps from scratch rather than update existing maps. When
applied for updating maps with new roads, these methods show
poor accuracy — the number of false positives overwhelms the few
cases of new construction. Figure 1 shows examples of false positive
detections that arise when we apply these methods to add missing
roads to OpenStreetMap. Oftentimes, these false positives arise due
to pre-existing paths such as air fields and cycling paths that appear
visually similar to roads (Figure 1). We propose a novel approach
that, in contrast to prior work, directly detects newly constructed
roads by comparing an up-to-date satellite image against an old
image. Figure 2 summarizes our approach.

Let𝑀old and𝑀new be old and up-to-date satellite images of the
same region, and let 𝐺 be the road network graph of that region in
the existing map. Each vertex 𝑣 ∈ 𝐺 is annotated with a pixel (𝑖, 𝑗)
corresponding to its location in the images, and edges correspond
to roads. At a high level, in our approach, we detect new roads by
identifying roads that appear in𝑀new but not in𝑀old or𝐺 . In most
of the world where existing maps have good coverage, roads de-
tected in both𝑀new and𝑀old likely are not roads at all, but instead

https://favyen.com/mapupdate
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Figure 2: Our two-stage approach for detecting newly constructed roads in satellite imagery. Here, a pair of aligned images
reflecting a new neighborhood is correctly detected.
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Figure 3: Illustration of change-seeking iterative tracing. The blue circle visualizes tracing confidences at the center pixel,
with lighter colors indicating higher confidence. The existing map is green, and traced roads are yellow. On each step, we
compare confidences in 𝑀new (top) against confidences in 𝑀old (bottom). On the right, this comparison helps to avoid tracing
a pre-existing pedestrian path (red circle) when the model outputs similar confidences in both images.

non-road paths (e.g., the examples in Figure 1); by comparing𝑀new
and𝑀old, our approach avoids these false positives.

We first apply a novel change-seeking iterative tracing proce-
dure that adapts MAiD [3] to selectively trace roads in𝑀new that
appear in neither𝑀old nor the existing map𝐺 , i.e., roads that were
constructed after𝑀old was captured. Our method traces roads along
segments where a CNNmodel has high confidence in𝑀new and low
confidence in 𝑀old. Although this procedure improves precision
over prior work, we find that it produces false positives when dif-
ferences in off-nadir angle and lighting or visible non-construction
activity result in a sharp increase in the CNN confidence from𝑀old
to𝑀new despite no new roads.

Thus, we propose a novel self-supervised change detectionmethod
to automatically prune these remaining false positives in the sec-
ond stage of our approach. Our method selectively identifies road
network changes so that visible non-construction activity does
not result in a false positive. The final road detections have high
precision, and can be used to improve real-world maps through
automatic merging or human validation.

In Section 3.1, we describe our method to obtain an initial set of
candidate roads using change-seeking iterative tracing. We then
introduce our novel self-supervised road-masking approach in Sec-
tion 3.2.

3.1 Change-Seeking Iterative Tracing
In the first stage, we apply a MAiD [3] model to segment the im-
ages for tracing confidences; each tracing confidence indicates the
likelihood that a road passes a pixel in a particular direction (angle).
In MAiD, these tracing confidences are used by an iterative tracing
algorithm to draw roads along directions with high confidence. In
contrast, we develop a change-seeking iterative tracing process
that avoids many of the false positives in Figure 1 that involve
pre-existing non-road paths by comparing confidences extracted
from𝑀new and from𝑀old to draw roads only along directions with
substantially higher confidence in𝑀new, which suggests the pres-
ence of a new road. Below, we detail each of the components in our
approach.

Model.We use the MAiD CNN model architecture from [3]. Given
an image 𝑀 , the model produces a three-dimensional matrix 𝑃 ,
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where 𝑃𝑖, 𝑗,𝑘 is the probability that a road passes the pixel at (𝑖, 𝑗)
in a direction specified by 𝑘 . 𝑃 includes 64 channels, and the 𝑘th
channel indicates the likelihood that there is a road at an angle
between 𝑘 2𝜋

64 and (𝑘 + 1) 2𝜋64 from a pixel. At a pixel that falls along
a straight road, channels specifying opposite directions along the
road would both have high confidence. 𝑃 is output at one-fourth
the input resolution.

Training. During training, we construct an example input by first
randomly deciding whether to input𝑀old or𝑀new, and then select-
ing a random 2D window in the image. We create training labels
using the existing road network graph𝐺 . The input is a 256×256×3
image (where the three channels are derived from RGB satellite
imagery), and the label is a 64×64×64matrix of tracing confidences.
We train the model using binary cross entropy loss, averaged across
pixels and the 64 channels.

Tracing Procedure. We develop a novel change-seeking iterative
tracing procedure that adapts the tracing process used in prior
work [3, 4] to focus tracing on newly constructed roads and avoid
inferring false positives along pre-existing non-road paths. Figure
3 illustrates the tracing process.

Iterative tracing starts from an initial pixel known to lie on the
road network, and follows directions with high confidence in 𝑃 at
the current pixel in a depth-first search (DFS) process. The inferred
road network consists of the paths that were followed during the
search.

We first compute 𝑃old from 𝑀old and 𝑃new from 𝑀new. We use
the existing map𝐺 as a base map: our tracing procedure starts from
pixels in the base map, and follows directions with high confidence
in 𝑃new and low confidence in 𝑃old in a depth-first search (DFS)
process. The inferred road network consists of paths that were
followed during the search. Let 𝐺 ′ be the current road network
state, whichwe extend during tracing.We initialize𝐺 ′ by densifying
𝐺 so that vertices are at most 10 m apart. We use each vertex in
𝐺 ′ as a starting pixel for tracing, and append all vertices to a DFS
stack.

On each tracing iteration, we consider the pixel (𝑖, 𝑗) at the top
of the search stack. We identify the highest confidence direction
𝑘 in 𝑃new [𝑖, 𝑗] that has an angular distance of at least 30◦ from
any existing edges in 𝐺 ′ at (𝑖, 𝑗). This prevents re-tracing roads
that are already covered by𝐺 ′. Additionally, though, we only trace
from (𝑖, 𝑗) if 𝑃new [𝑖, 𝑗, 𝑘] ≥ 𝑇new and 𝑃old [𝑖, 𝑗, 𝑘] < 𝑇old, i.e., if the
tracing confidence in the up-to-date imagery exceeds a threshold
while the confidence for the same pixel and direction in the old
imagery is small. Thus, our tracing procedure only follows new
roads that are not reflected in 𝑃old. If we decide to trace, then we
add a new vertex 𝑣 = (𝑖 +cos𝛼, 𝑗 + sin𝛼) to𝐺 ′, where 𝛼 is the angle
corresponding to 𝑘 , and add an edge from (𝑖, 𝑗) to 𝑣 . We then push
𝑣 onto the DFS stack. Otherwise, if we decide not to trace, we pop
(𝑖, 𝑗) from the stack.

We terminate tracing once the DFS stack is empty. At this point,
each connected component in𝐺 ′ −𝐺 is a candidate group of roads.
By comparing 𝑃old and 𝑃new during the tracing procedure, we are
able to avoid tracing along pre-existing non-road paths.

Lighting and Angle Differences Activity but no Construction
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Figure 4: False positives after change-seeking iterative trac-
ing.We show road detections in yellow, which correspond to
a railway and three pedestrian paths. Lighting and off-nadir
angle differences and visible non-construction activity lead
to low tracing confidences in the old image (top) and high
confidence in the new image (bottom), which results in the
false positive road detections.

3.2 Self-Supervised Learning for Selective
Change Detection

Change-seeking iterative tracing improves precision over prior
work, but still produces false positives when 𝑃new reflects higher
confidence than 𝑃old due to angle and lighting differences or visible
activity without new construction between𝑀old and𝑀new. Figure
4 shows example false positives. On the left, a railway and a pedes-
trian path are partially occluded by shadows in the old image, but
are visible in the up-to-date image. On the right, although there is
visible activity (bridge demolition and crosswalk painting), there
are no new roads, and two walkways are incorrectly detected.

In the second stage of our approach, we apply change detection
to filter the candidates generated in the first stage by pruning these
false positives. However, as we will show in the evaluation, unsuper-
vised change detection methods are unable to robustly distinguish
false positives due to angle, lighting, and other aforementioned dif-
ferences. Supervised methods are also impractical: paired examples
of new construction are tedious to annotate due to their low density.
Instead, we develop a novel approach that applies self-supervised
learning to selectively identify road network changes.

In our self-supervised learning procedure, we train a classifier
that inputs a pair of windows of old and up-to-date images. The
input may either be a matching pair, where 𝑀old and 𝑀new are
cropped at the same window, or a mismatched pair, where 𝑀old
and𝑀new are cropped at disjoint windows. We train the classifier
to distinguish matching pairs from mismatched pairs. We generate
training examples by deciding to create a matching pair or mis-
matched pair with equal probability. To generate a matching pair,
we randomly pick onewindow and crop both images at that window.
To generate a mismatched pair, we randomly pick two disjoint win-
dows. The classifier learns to match features between the images
to determine whether they are taken at the same window despite
differences in matching pairs such as shadows, camera angle, and
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Figure 5: Examples of matching pairs (left) and mismatched
pairs (right) that we generate during training in the second
stage. (a) shows the windows selected for each example pair
over a large region, (b) shows the satellite images cropped at
those windows, and (c) shows the images after masking.

non-construction activity that make unsupervised change detection
methods ineffective on this task. We show example training pairs
in Figure 5.

To apply the filter for inference, we execute the classifier on crops
of𝑀old and𝑀new taken at a window around connected components
of roads detected during tracing. Although this pair is matching,
where the crops are aligned, if there is substantial change in the
images due to newly constructed roads, the crops are likely to
fool the classifier into outputting a higher probability for the “mis-
matched” class. Thus, we prune candidate roads if the “mismatched”
probability falls below a threshold.

However, in practice, new construction is often adjacent to pre-
existing roads, buildings, and other structures. If the classifier ob-
serves the same structures in both the old and up-to-date windows,
it can determine that the pair is matching with high confidence.
Thus, we develop a masking approach that focuses the classifier on
the detected candidate road.

Model. The model input consists of 7 channels: 3 channels from
the crop 𝐼old of𝑀old, 3 channels from the crop 𝐼new of𝑀new, and 1
channel containing a mask 𝑆 . 𝑆 [𝑖, 𝑗] is either 0 or 1, and if 𝑆 [𝑖, 𝑗] = 0,
then we zero the corresponding values in the crop channels, i.e.,
𝐼old [𝑖, 𝑗] = 𝐼new [𝑖, 𝑗] = 0. Because the size of the input during
inference varies based on the candidate road, we use a fully convo-
lutional CNN architecture consisting of 6 encoder layers followed
by 5 decoder layers. Figure 6 shows the model architecture. The
model outputs a probability at each pixel that the input example
is “matching”. We train the CNN with cross entropy loss, averaged
over only pixels where 𝑆 [𝑖, 𝑗] = 1.

Training. On each training step, we construct a matching example
with 50% probability and a mismatched example with 50% probabil-
ity. In both cases, we begin by computing the mask 𝑆 that we will
apply to the imagery crop inputs. During inference, 𝑆 [𝑖, 𝑗] will be
1 only near a group of candidate roads obtained through tracing.
For effective training, 𝑆 must be similar to what we will provide
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Figure 6: CNN model architecture for the classifier used in
our self-supervised road-masking approach.
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Figure 7: Classifier outputs on example groups of candidate
roads inferred through change-seeking iterative tracing. At
the bottom, we show the matching class probability.

during inference, e.g., 𝑆 should predominantly cover roads. Thus,
we leverage 𝐺 to compute the mask: we randomly select a vertex
𝑣0 in 𝐺 , and perform a breadth-first-search from 𝑣0 to derive a
subgraph 𝐻 that will determine 𝑆 . During the search, we add each
traversed edge to 𝐻 , and terminate the search once the length of
the bounding box containing 𝐻 exceeds a threshold 𝑇box. We vary
𝑇box to ensure that training examples have diverse mask sizes, since
during inference, candidate groups of roads may exhibit different
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sizes; specifically, we pick 𝑇box uniformly between 50 m and 150 m.
We set 𝑆 [𝑖, 𝑗] = 1 if pixel (𝑖, 𝑗) falls within 20 meters of some edge
in 𝐻 , and set 𝑆 [𝑖, 𝑗] = 0 otherwise.

To create a mismatched example, we select two windows𝑊old
and𝑊mask.𝑊mask is always a 512× 512 window centered at 𝑣0. We
randomly pick𝑊old so that𝑊old and𝑊mask are disjoint, but the
distance from𝑊old to 𝑣0 is at most 2500 m. Choosing nearby but
disjoint windows when creating mismatched examples is crucial as
it yields more challenging examples where the old and up-to-date
crops have similar style (e.g., both in suburban neighborhoods) but
different semantic content. We crop𝑀old at𝑊old, and𝑀new and 𝑆
at𝑊mask.

To create a matching example, with 80% probability, we simply
crop both𝑀old and𝑀new at𝑊mask. However, in some cases, tracing
may output roads over non-road paths; if we only train the model
on matching examples where the pixels where 𝑆 [𝑖, 𝑗] = 1 fall on
roads, the model may be ineffective on non-road inputs. Thus, with
20% probability, we crop𝑀old and𝑀new at a randomwindow𝑊rand.

Figure 5 shows two training examples.

Inference. For each candidate group of roads 𝐻 , we first derive
a corresponding mask 𝑆 similar to the process during training:
𝑆 [𝑖, 𝑗] = 1 only if pixel (𝑖, 𝑗) falls within 20 meters of a candidate
road. We crop 𝑀old, 𝑀new, and 𝑆 at a window corresponding to
the bounding box of 𝐻 with 20-meter padding. We then compute
the average probability 𝑝 that the model outputs over pixels where
𝑆 [𝑖, 𝑗] = 1. Then, given a filter threshold 𝑇filter, if 𝑝 < 𝑇filter, we
prune the candidate. In Figure 7, we show the average probability
on several roads inferred through change-seeking iterative tracing.

4 EVALUATION
We evaluate our approach against existing state-of-the-art map
inference and change detection methods on a task involving au-
tomatically updating OpenStreetMap with new roads. We use 60
cm/pixel resolution satellite imagery from MassGIS from 2015 and
2017 as our old imagery 𝑀old and up-to-date imagery 𝑀new, and
the OpenStreetMap dataset as our road network graph. We select
two disjoint sections of this dataset for training (3000 km2 in the
Boston metro area) and for evaluation (1800 km2 in northeastern
Massachusetts).

Metrics. For evaluation, we hand-annotated 204 groups of roads
that appear in𝑀new but not𝑀old. We prune these roads from Open-
StreetMap to derive a road network𝐺 corresponding to a map that
has not yet been updated with the new imagery. We compare the
methods in terms of the precision and recall on recovering the
pruned roads. Each approach outputs a set of map update proposals
𝑃 = {𝐻1, . . . , 𝐻𝑛}, where each 𝐻𝑖 is a connected component of in-
ferred roads. The pruned roads form a set of ground truth proposals
𝑃∗. We say a proposal 𝐻𝑖 ∈ 𝑃 matches a ground truth proposal
𝐻∗
𝑗
∈ 𝑃∗ if the proposal bounding boxes intersect. Then, precision

and recall are defined as:

precision =
# matches

|𝑃 | recall =
# matches

|𝑃∗ |
Under this metric, each approach yields a precision-recall curve
over varying confidence thresholds (e.g., in our approach, varying
𝑇filter). Because 𝑃∗ is not comprehensive, we discard a proposal

𝐻𝑖 ∈ 𝑃 if it is a correct example of a road but does not match with
any ground truth proposal.

Although the focus of our approach is on improving the precision
of inferred road segments rather than improving the geometrical
accuracy of those segments, we also evaluate the methods on the
latter in terms of Average Path Length Similarity (APLS) [27].

Baselines. We evaluate our method against two baselines detailed
in Section 2 that implement existing state-of-the-art road inference
approaches: MAiD [3] and DeepRoadMapper [19]. We apply these
methods on𝑀new to derive proposed roads, and prune proposals
that correspond to roads already mapped in OpenStreetMap by
pruning segments that fall within 40 m of an edge in 𝐺 . We also
evaluate against an unsupervised satellite image change detection
method, UnstructChange [12], which identifies change by compar-
ing feature maps extracted from old and up-to-date satellite images
through a VGG-19 model trained for segmentation. To apply Un-
structChange, we first obtain candidate roads through MAiD, and
then eliminate candidates where the unsupervised method detects
no change.

Finally, a fourth baseline, denoted CmpOnly, applies the first
stage of our approach only (change-seeking iterative tracing). We
denote our full approach Cmp+Filter.

Results. We show precision-recall curves on detecting new roads
over varying confidence thresholds in Figure 8, and qualitative re-
sults in Figure 9. DeepRoadMapper is unable to achieve higher than
91% precision due to false positives, many of which correspond to
pre-existing non-road paths. MAiD provides higher precision at
lower recalls, but still yields only 88% precision at 50% recall. At
50% recall, CmpOnly improves precision to 94%, and Cmp+Filter
further improves precision to 97%. Thus, our method effectively
prunes false positives that have lighting and angle differences or
visible activity but no new roads. UnstructChange does not im-
prove performance over MAiD: it outputs false positives due to
non-construction changes (such as angle and lighting differences)
between the old and up-to-date images. While our work focuses on
improving the precision of road detections, Figure 8b shows that
our method also yields a 5% improvement in APLS, which measures
the geometrical accuracy of inferred roads.

Overall, our full approach provides near-100% precision at rea-
sonable recall levels. Precision is crucial because automatic inte-
gration of detections into the street map dataset is only practical
if errors are rare – otherwise, the confusion for users caused by
introducing errors may outweigh the benefit from expanded map
coverage.

4.1 Updating Maps with New Buildings
Street maps contain numerous annotations besides roads. In this
section, we show that a simple adaption of our approach for detect-
ing new construction of buildings yields high accuracy.

Baselines.We evaluate against two baselines. BldgSeg implements
segmentation-based building extraction [17], applying a deep CNN
to segment imagery and then extracting building polygons from
the segmentation probabilities. BldgSeg Cmp applies the first stage
of our approach, which we adapt for buildings below.
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(a) Precision and recall comparing detections against hand-labeled new construction.

Method APLS
DeepRoadMapper 0.52

MAiD 0.49
UnstructChange 0.48

CmpOnly 0.51
Cmp+Filter (ours) 0.57

(b) APLS.

Figure 8: Evaluation of our approach (Cmp+Filter) and the baselines on detecting newly constructed roads.

Figure 9: Example detections of new roads produced by our Cmp+Filtermethod, including two incorrect outputs on the bottom
right. We show the basemap in blue and detections in yellow.

First Stage. Our change-seeking iterative tracing method is ef-
fective at tracing road networks, but is not applicable for tracing
building polygons. Instead, we apply the BldgSeg baseline to seg-
ment𝑀old and𝑀new for buildings, and derive candidate buildings
by comparing segmentation probabilities. Specifically, we first com-
pute segmentation probabilities 𝑃old [𝑖, 𝑗] and 𝑃new [𝑖, 𝑗] using the
CNN at each pixel in the imagery. We then compute a binary im-
age 𝐵compare such that 𝐵compare = 1 only if 𝑃old [𝑖, 𝑗] < 𝑇old and
𝑃new [𝑖, 𝑗] > 𝑇new. Finally, we extract buildings from 𝐵compare.

Second Stage.We train and apply our self-supervised model as for
roads, but compute the mask 𝑆 by adding a fixed padding around
building polygons instead of around roads.

Metrics.We evaluate the methods on precision and recall, as de-
fined for roads. We construct a ground truth set of building poly-
gons by removing 665 buildings from OpenStreetMap that were
constructed in northeastern Massachusetts between 2015 and 2017.

Results. We show results in Figure 10. On buildings, at 30% recall,
BldgSeg yields only 85% precision. BldgSeg Cmp improves precision
to 87%, and our approach, Cmp+Filter, yields 92% precision. This
corresponds to an almost two-fold reduction in error rate (1 −
precision), from 15% to 8%.

4.2 Removing Roads
Cmp+Filter can be applied in reverse to identify removed roads,
where we identify portions of the existing map that appear in
𝑀old but not in𝑀new. Although we are unable to identify enough
examples of removed roads to conduct a quantitative evaluation, we
show three detections of removed roads in Figure 11. Cmp+Filter
succeeds in identifying a shifted highway and bulldozed road.

5 CONCLUSION
Maintaining street maps today is labor-intensive and costly. We find
that existing state-of-the-art street map inference systems exhibit
low precision when applied to update an existing map dataset,
OpenStreetMap. By leveraging multiple satellite images collected
at different times, our two-stage approach complements prior work
by identifying roads and buildings that were newly constructed
in the most recent image. Our evaluation on 4800 𝑘𝑚2 of satellite
imagery shows that our approach is able to update existing maps
to capture new construction with high precision.
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