
A Greener Transportation Mode: Flexible Routes
Discovery from GPS Trajectory Data∗

Favyen Bastani
University of North Texas

favyenbastani@my.unt.edu

Yan Huang
University of North Texas
huangyan@unt.edu

Xing Xie
Microsoft Research Asia

Xing.Xie@microsoft.com

Jason W. Powell
University of North Texas

jason.powell@unt.edu

ABSTRACT
We propose a flexible mini-shuttle like transportation system
called flexi, with routes formed by analyzing passenger trip
data from a large set of taxi trajectories. The usage of pub-
lic transportation is declining as often it no longer matches
with individual needs. Thus, the flexi system provides a
transportation mode in between buses and taxis so that in-
convenience in switching to the system can be minimized
overall. To generate flexi routes, we propose a two-phase
approach. In the first phase, a fast diameter-constrained
agglomerative clustering algorithm is developed and applied
to the set of trips derived from the GPS data. This phase
identifies a set of heavily traveled spatio-temporal trip clus-
ters called hot lines. In the second phase, a directed acyclic
graph is constructed from the hot lines. Then, an optimal
single flexi route discovery algorithm on graph searching is
proposed. Multiple routes are discovered by iteratively ap-
plying the single routing algorithm. Extensive experiments
using a large set of real taxi trajectory data show that the
flexi system can save a large percentage of trip mileage.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS

1. INTRODUCTION
Public transportation offers a means to decrease traffic

congestion and fuel consumption by ride sharing. However,
the usage of public transportation is declining as public
transportation routes often no longer match with individ-
ual needs and personal automobiles grow more appealing.
Thus, transportation system users increasingly are switching
from public transportation methods to private automobiles,

∗This work was partially supported by the National Science
Foundation under Grant No. IIS-1017926.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’11, November 1-4, 2011. Chicago, IL, USA
Copyright c©2011 ACM ISBN 978-1-4503-1031-4/11/11 ...$10.00.

which can be environmentally damaging and lead to greater
traffic congestion. Public transportation must adapt in or-
der to supply modern demands. According to the Ameri-
can Public Transportation Association (APTA) 2011 Public
Transportation Factbook, from 2008 to 2009, the total num-
ber of passenger trips using public transportation dropped
from 10.5 to 10.4 billion [1]. Thus, establishing more per-
sonalized public transportation will help reverse the general
trend of switching from public to private transportation.

Related work includes moving object clustering, trajec-
tory clustering, motion path and general traffic pattern dis-
covery, and routing. In moving object clustering, live spatio-
temporal data from moving objects are processed to identify
events such as cluster joining and splitting. Two approaches
are rectangular bounding [6] and object movement dissimi-
larity [5]. Trajectory clustering involves clustering data se-
quences dependent on some incremental variable, usually
time; in [3], this is accomplished with probabilistic cluster-
ing. In [7], hot motion paths are efficiently extracted from
location-aware device data by lowering communication over-
head with processing on the devices. Although these data
are useful for certain purposes, in transportation route for-
mation we need a finer time granularity, similarity based
on source and destination (including time), and highly spe-
cific traffic patterns (to minimize the distance passengers
must walk before being picked up). Routing algorithms have
been developed [8, 2], but not based on actual raw taxi trip
data. Such data has been used before for other purposes;
in [9], fast routes to a certain destination are developed for
taxis drivers using a time-dependent landmark graph and
Variance-Entropy-Based Clustering.

This paper attempts to mine combinable trips from taxi
GPS trajectories and suggest a flexible mini-shuttle like trans-
portation system that lies between bus and subway trans-
portation, which are slower due to stops, and taxis, which
cause greater traffic congestion and pollution. The main
challenges of devising such a system are deciding which trips
are combinable and designing effective routing algorithms.
Specifically, we make the following contributions: (1) adap-
tation of the basic agglomerative hierarchical clustering al-
gorithm [4] into a fast diameter-constrained clustering-based
approach to combine multiple taxi trips (hot lines) with a
service guarantee; (2) a method to allow the hot lines to form
a directed acyclic graph and an efficient routing algorithm
for the new transportation system; (3) experimental valida-
tion of the proposed algorithm on a large real taxi trajectory
dataset.

405

2. METHODOLOGY

2.1 Problem Definition
We are interested in creating a flexible mini-shuttle system

consisting of vehicles called flexis that operate in a hybrid
mode between taxis and buses. A flexi operates through-
out the day attempting to transport multiple passengers per
trip. The flexi’s schedule is available ahead of time but does
not contain short routes recurring with a set frequency cur-
rently used in bus systems. Because it has a smaller capacity
than a bus, a flexi does not require marked stops.

Definition [Dratio and Eratio]: The distance ratio, Dratio,

is defined as Dratio =
Dflexi+D

˜flexi

Dtaxi
, where Dflexi is the to-

tal distance that flexis travel based on the flexi schedule,
D

f̃ lexi
is the total distance of trips not satisfied by a flexi

in a system with flexis and taxis, and Dtaxi is the total dis-
tance of all trips in the taxi system. The combination or

efficiency ratio Eratio is defined as Eratio =
Dflexi

Dtaxi−D
˜flexi

.

Eratio is the combination factor of trips (the average
number of flexi trips that one original taxi trip has been
combined into). Dratio and Eratio are defined such that
both are better when lower and both should be between 0
and 1 for reasonable generated trips.

Given: A set S = {s1, s2, ..., sn} of taxi trips of size n. Each
trip si contains a set of six attributes that define the
trip, {si.sx, si.sy, si.st, si.ex, si.ey, si.et}. si.sx and
si.sy are the starting coordinates of si, and si.st is
the trip’s starting time. si.ex and si.ey are the ending
coordinates, and si.et is the ending time.

Goal: To combine the trips in S and establish routes for
the flexi system. The flexi schedule should maximize
the demand satisfied by flexis.

Objective: To minimize Dratio while maintaining an ac-
ceptably low Eratio.

The meaning of an acceptable Eratio is that the following
must be true: Eratio < Ctaxi

Cflexi
, where Ctaxi is the operating

cost for one taxi and Cflexi is the operating cost for one flexi
under the same conditions.

2.2 Hot Line Discovery
We would like to find clusters of trips that can be com-

bined. The trips to be combined should share similar start-
ing times, durations, origins, and destinations. Here, we
develop a general hierarchical clustering algorithm; thus, we
use si.ai as ith attribute of si.
Our goal is to ensure that trips that form a hot line have

certain space and time service guarantees. We set the limit
on the distance a node (trip) may be from its cluster cen-
ter to θ, and define distance as the normalized Euclidean
distance between its attributes. Normalization is manually
performed because distance and time may vary in the data.
The algorithm supports normalization of the l attributes us-
ing a set of weights (modifiable to account for differences be-
tween attributes) , W = {w1, w2, ..., wl}. Then, the distance
between two nodes sa and sb with l attributes is d(sa, sb) =√

((sa.a1− sb.a1)/w1)2 + ...+ ((sa.al − sb.al)/wl)2

Many hierarchical clustering algorithms are available. Be-
cause we are only interested in clusters with diameters less

than the threshold θ, we develop a distance-constrained, ag-
glomerative, complete-linkage hierarchical clustering algo-
rithm. The algorithm only keeps track of the cluster pairs
with distance less than θ.

When clustering begins, each trip si is in a separate clus-
ter; thus, there are n clusters initially and the size of each
cluster ci, |ci| = 1. During each iteration, the two closest
clusters ca and cb are merged (i.e., each element of cb is re-
moved from cb and inserted into ca). The distance between
clusters is defined as d(ca, cb) = max{d(i, j)|i ∈ ca, j ∈ cb}
Initially, the distance d(ci, cj) is calculated between every

two clusters ci and cj , and distances less than θ are stored
along with the nodes into a linked list D. The element of D
at x contains the indexes of the nodes it represents, Dx.a and
Dx.b, and the distance between those nodes, Dx.d. Thus,
d(cDx.a, cDx.b) = Dx.d. We also use the notation Dx =
{Dx.a,Dx.b,Dx.d}. D is sorted initially in ascending order
and is maintained in sorted order after clusters are merged.

For each cluster ci, all Dx containing ci in the node pair
are stored into a neighbor list ci.m. ci.m contains references
to the linked list, and is used later to quickly update D after
a merge of clusters happens.

D is then read sequentially. For each Dx, clusters Dx.a
and Dx.b are first merged into Dx.a, i.e. Dx.a absorbs Dx.b.
D must then be updated as the cluster Dx.b no longer ex-
ists. For a cluster c, if the pair (Dx.a, c) is in Dx.a.m but
the pair (Dx.b, c) is not in Dx.b.m, then (Dx.a, c) can be
safely removed from D. This is because if the distance from
c to Dx.b is greater than θ (not exist in D), then the maxi-
mum distance from the merged cluster to c must be greater
than θ. Similarly, if the pair (Dx.b, c) is in Dx.b.m but the
pair (Dx.a, c) is not in Dx.a.m, then (Dx.b, c) can be safely
removed from D. Otherwise, D contains both (Dx.a, c) at
index y and (Dx.b, c) at index z. If Dy.d < Dz.d, then we
set Dz = {Dy.a,Dy.b,Dz.d} and Dy is deleted. Otherwise,
Dz is deleted without update to Dy.

Hierarchical clustering continues until D contains only the
root of the linked list that does not represent an actual dis-
tance pair. The ending number of clusters is equal to n− e,
where e is the number of iterations elapsed. After clustering,
the final clusters are arranged such that the lowest index is
1 and the highest index is n− e. Then, we can calculate the
average attributes for each trip cluster. For a cluster of taxi
trips ci, let ci.ak be the average value of the nodes’ si.ak.
In the taxi trip problem, si contains the six attributes that

define the trip. si.a1 and si.a2 are si.sx and si.sy, si.a3 is
si.st, si.a4 and si.a5 are si.ex and si.ey, and si.a6 is si.et.

For combined spatiotemporal comparisons, we must nor-
malize spatial and temporal distances. This is accomplished
by setting w1 = w2 = w4 = w5 and w3 = w6. We choose
one unit for the maximum radius θ (i.e., the maximum dis-
tance that a trip may be from its cluster) and base choices
of weights on this radius.

2.3 Routing Algorithm
In order to identify a route that connects multiple taxi trip

clusters, our routing algorithm must identify which clusters
will be connected (i.e., which clusters may follow a specific
cluster in a route). To do this, we must calculate the time
necessary to travel from the ending point of one trip cluster
to the beginning point of one cluster. Then, we can estimate
the time a flexi will have to wait at a stop by subtracting
this traveling time from the time in between the trip clusters.

406

Here, we consider taxi trips instead of data points, so we will
use a similar notation as the system from subsection 2.1.

Let t(ci, cj) =
m(ci,cj)

s
be the estimated traveling time

from ci to cj , where m(ci, cj) is the Manhattan distance
from (ci.ex, ci.ey) to (cj .sx, cj .sy) and s is the average speed
of the trip. s is estimated as 11 km/h based on averages in
taxi trip data.

A cluster ci is considered a parent of cj if 0 < cj .st−ci.et−
t(ci, cj) < M , where M is the maximum time in minutes a
flexi will wait at a stop. The set of ni parents of cluster ci
P (ci) = {pi,1, pi,2, ..., pi,ni}. The fitness of a single trip clus-

ter is f(ci) = |ci|
√

(ci.ex− ci.sx)2 + (ci.ey − ci.sy)2. To
find the longest route in G, we first sort the set of clusters
C by starting time st. Then, we iterate through C in in-
creasing order of st and calculate the route fitness F (ci) =
max{F (pi,1), F (pi,2), ..., F (pi,ni)} +f(ci). max{} (in the
case that a taxi cluster has no parents) is defined as zero.

Once the route fitness of each cluster has been calculated,
we search the set for the largest value and select the the
route defined by that cluster. Additionally, a capacity-based
routing algorithm is tested that limits the number of people
taken on any trip cluster in the route to L, lowering operat-
ing costs. We also implement a fast greedy algorithm that
selects the next point in a route based on maximizing the
weight gain, and compare the three algorithms.

3. EXPERIMENTAL SETUP
Data is collected from over seventeen thousand taxis from

three companies in Shanghai for one day (May 29, 2009) con-
sisting of entries that contain the time and GPS coordinates.
The data consists of 432,327 trips with each trip represent-
ing the transfer of passengers from a starting location to a
destination. This spatio-temporal data can be used to im-
prove traffic congestion in dense urban areas by optimizing
flexi routes, which may replace existing bus routes.

We evaluate the routing algorithms in solution quality
and scalability. Solution quality is measured by Dratio and
Eratio: Dratio should be minimized while maintaining an
acceptable Eratio. The threshold for an acceptable Eratio
is unknown because the operating cost ratio is unknown and
depends on the specific vehicles chosen. Scalability is mea-
sured by execution time with respect to the number of clus-
ter trips the routing algorithm must consider.

For hierarchical clustering, we set a reasonable maximum
walking distance of 500 m and a maximum waiting time of
12 min. As these are both maximum amounts, they should
be equivalent after normalization, thus can be handled by
θ = 1, w1 = w2 = w4 = w5 = 500, and w3 = w6 = 12.
We additionally test maxima of 250 m and 6 min. In the
routing algorithm, the maximum time a flexi will wait at a
stop M is set to 15 min.

4. RESULTS
First, we conduct experiments to determine a reasonable

capacity to use for the capacity-based routing algorithm.
This is accomplished by analyzing results from the normal
routing algorithm and estimating the loss in solution quality
by limiting the number of passengers in each step of the
flexi route found (the optimal route may be different for a
capacity-based routing algorithm because the decrease in F
is lower for flexi routes with higher passenger counts).

Fig. 1 shows the distance and passenger fractions (y axis)

Figure 1: Distance and passenger fractions at differ-
ent capacities

at different capacities (x axis) with 6,000 flexis. The distance
fraction is limited route fitness

original route fitness
, and the passenger fraction is

limited number of passengers
original number of passengers

, where the number of passengers is

the sum of |ci| in each cluster of the route. Note that the
clusters along routes had no more than eleven passengers.

Based on the graph, we choose six as the capacity for
further experimentation. In graphs, routing indicates the
original routing algorithm, capacity-based routing indicates
the limited capacity routing algorithm, and greedy indicates
the simple greedy algorithm.

Figure 2: Dratio with 250 m maximum distance and
6 min maximum waiting time

Figure 3: Dratio with 500 m maximum distance and
12 min maximum waiting time

Figures 2 and 3 show that with looser weights, the im-
provement in Dratio increases. Also, in both graphs, the
slope of the curve gradually decreases becauses the rout-
ing algorithms select the best routes first. In Figure 3, the
capacity-based routing and original routing lines cannot be
distinguished, suggesting that capacity-based routing is fa-
vorable with almost identical Dratio but significantly lower
total operating costs: the required capacity is reduced from

407

Figure 4: Eratio with 250 m maximum distance and
6 min maximum waiting time

Figure 5: Eratio with 500 m maximum distance and
12 min maximum waiting time

eleven passengers to six passengers (not counting a driver).
Lower operating costs imply lower fuel consumption.

The exact Dratio at 6,000 flexis in Fig. 3 for the optimal
routing algorithm is 0.579, and for the greedy routing algo-
rithm is 0.637. This suggests that with flexis in place vehicles
will have to travel approximately 57.9% of the distance that
taxis originally traveled. The capacity-based routing algo-
rithm has a Dratio of 0.580, showing that there is indeed
some loss in solution quality.

Eratio, like Dratio, generally improves with less restric-
tive maximum combination values. In Figure 5, the greedy
algorithm actually achieves a lower Eratio than the optimal
routing algorithm. The rate of deterioration in Eratio for
the greedy algorithm is slower because the first flexi route
solutions it identifies are not optimal, leaving more good
solutions to be found later.

Table 1 shows the execution time of the routing algorithm
and greedy algorithm with different numbers of trip clusters.
The algorithms are tested with a maximum distance of 500
m and a maximum waiting time of 12 minutes, and are used
to generate routes for 6,000 flexis. The number of trip clus-
ters represent 50%, 75%, and 100% of the entire dataset

Trip Clusters Routing time (min) Greedy time (min)
87167 142.6 25.56
130750 485.5 59.08
174333 1022 122.8

Table 1: Routing algorithm time with increasing
number of trip clusters

for those thresholds. 25%, or 43,583 trip clusters, cannot
be tested because there is too little total data (D

f̃ lexi
= 0

before 6,000 flexi routes are generated).

5. CONCLUSIONS
In this paper, we establish a two-phase approach for form-

ing public transportation routes from GPS trip data. We de-
velop a highly efficient hierarchical clustering algorithm that
considers only distances below a threshold to identify heav-
ily traveled trips and a scalable routing algorithm to form a
route from the directed graph of trips. Our method consid-
ers spatio-temporal data, allowing it to handle data during a
timespan in which traffic flow may vary greatly, and can be
executed with different parameters to derive public trans-
portation routes in different situations. Experiments show
that our routing algorithm outputs significantly better re-
sults than a simple, fast greedy algorithm, and that the flexi
system has the potential to reduce fuel consumption.

We hope to continue improving the routing algorithm, ex-
tend this approach to GPS trip data for multiple days and
use recurring patterns to form routes free from day-to-day
fluctuations, and envision applying this approach dynamic
scenarios where flexi requests containing information includ-
ing submission time, preferred coordinates, and destinations
are analyzed in real time. In this scenario, after passengers
request a route, they would be guaranteed a flexi by a certain
time or rejected, making predetermined routes unnecessary.

6. REFERENCES
[1] Public transportation factbook. Technical report,

American Public Transportation Association, 2011.

[2] Wei Fan and Randy B. Machemehl. Optimal transit
route network design problem: Algorithms,
implementations, and numerical results. Technical
report, University of Texas at Austin Center for
Transportation Research, May 2004.

[3] S. Gaffney and P. Smyth. Trajectory clustering with
mixtures of regression models. In Proceedings of the
fifth ACM SIGKDD, pages 63–72. ACM, 1999.

[4] A.K. Jain, M.N. Murty, and P.J. Flynn. Data
clustering: a review. ACM computing surveys (CSUR),
31(3):264–323, 1999.

[5] C.S. Jensen, D. Lin, and B.C. Ooi. Continuous
clustering of moving objects. IEEE Transactions on
Knowledge and Data Engineering, pages 1161–1174,
2007.

[6] Y. Li, J. Han, and J. Yang. Clustering moving objects.
In Proceedings of the tenth ACM SIGKDD, pages
617–622. ACM, 2004.

[7] Dimitris Sacharidis, Kostas Patroumpas, Manolis
Terrovitis, Verena Kantere, Michalis Potamias,
Kyriakos Mouratidis, and Timos Sellis. On-line
discovery of hot motion paths. EDBT, March 2008.

[8] P. Shrivastava and M. O’Mahony. Design of feeder
route network using combined genetic algorithm and
specialized repair heuristic. Journal of Public
Transportation, 10(2):109–133, 2007.

[9] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun,
and Y. Huang. T-drive: driving directions based on taxi
trajectories. In Proceedings of the 18th SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, pages 99–108. ACM, 2010.

408

