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Query: Select video frames with three buses



Object Track Queries

<(t1, x1, y1, w1, h1),
             …           ,
  (tn, xn, yn, wn, hn)>
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Find cars that rapidly decelerate



Find cars that rapidly decelerate

Given track A: select A if there is a 1 sec 
interval I such that, if v1 is A’s velocity in 
first half of I, and v2 is velocity in second 
half, then v1 - v2 exceeds a threshold.
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Find bears catching salmon

Given bear A and salmon B: select (A, 
B) if A and B intersect for at least two 
seconds.
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Find cars that run a red light

Given car A and red light B: select (A, B) if A 
starts in bottom-right and ends in top-left, 
and the interval of A is contained in the 
interval of B.
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● Costly!
● On $10,000 GPU, object 

detection runs at ~30 fps
● On AWS, $1 per video hour
● => $72K to execute query 

over one month of video 
captured from 100 cameras
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Low-Framerate Tracking: Predicate Errors
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MIRIS: Fast Object Track Queries over Video
Key ideas:
● Track at low framerate; but may need to re-visit some intermediate frames
● Query Planning + Object Tracking

○ Parameterizable query-driven object tracking method
○ Query planner to select the parameters using AQP techniques
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Low-Framerate Tracking: Matching Errors
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Low-Framerate Tracking: Matching Errors
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Close: keep both
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Filtering

● Remove groups of paths that we are sure do not satisfy the predicate
● Several filtering methods for planner to choose from: nearest-neighbor, RNN









Refinement:
Address Predicate Errors



MIRIS: Fast Object Track Queries over Video
Key ideas:
● Track at low framerate; but may need to re-visit some intermediate frames
● Query Planning + Object Tracking

○ Parameterizable query-driven object tracking method
○ Query planner to select the parameters using AQP techniques



Query Planning

Video Dataset

Select tracks satisfying P, with 99% accuracy.
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Query Planning

Video Dataset
Sampled Video Segments

Select tracks satisfying P, with 99% accuracy.

Filtering Uncertainty 
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Parameters:
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Query Planning

Video Dataset
Sampled Video Segments

Select tracks satisfying P, with 99% accuracy.

Filtering Uncertainty 
Resolution RefinementInitial

Tracking

Sampling 
Framerate

“Closeness”
ThresholdNND RNN Prefix-

Suffix Accel

Parameters: Parameters:Methods: Methods:

RNN

T T T T T

Per-method threshold parameters



Evaluation: 9 Queries over 5 Video Sources
Diverse range of video sources:

● UAV: video captured by UAV over traffic junction
● Tokyo, Warsaw: video captured by fixed traffic camera
● Resort: video of a pedestrian walkway
● BDD: dashcam video
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Four baselines:
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GNN: apply our tracker model without filtering, uncertainty resolution, and refinement
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Conclusion
● MIRIS is an approach for efficiently executing object track queries on large 

video datasets
● Provides a 9x average speedup (at the highest accuracy levels)
● Code: https://favyen.com/miris/


