MIRIS: Fast Object Track Queries in Video

Favyen Bastani, Songtao He, Arjun Balasingam, Karthik Gopalakrishnan, Mohammad Alizadeh, Hari Balakrishnan, Michael Cafarella, Tim Kraska, Sam Madden MIT CSAIL

Traffic Cameras

Dashcams

Miscellaneous

Video Analytics

Debugging Autonomous Vehicle Software

Traffic Planning

Finding Interesting Events

Real-Time Mapping

Select video frames with three buses

NoScope: Optimizing Neural Network Queries over Video at Scale. Daniel Kang et al. VLDB 2017.
Accelerating Machine Learning Inference with Probabilistic Predicates. Yao Lu et al. SIGMOD 2018.
Blazelt: Optimizing Declarative Aggregation and Limit Queries for Neural Network-Based Video Analytics. Daniel Kang et al. VLDB 2020.

[1] **NoScope**: Optimizing Neural Network Queries over Video at Scale. Daniel Kang et al. VLDB 2017.

[2] Accelerating Machine Learning Inference with **Probabilistic Predicates**. Yao Lu et al. SIGMOD 2018.

[1] **NoScope**: Optimizing Neural Network Queries over Video at Scale. Daniel Kang et al. VLDB 2017.

[2] Accelerating Machine Learning Inference with **Probabilistic Predicates**. Yao Lu et al. SIGMOD 2018.

[1] **NoScope**: Optimizing Neural Network Queries over Video at Scale. Daniel Kang et al. VLDB 2017.

[2] Accelerating Machine Learning Inference with **Probabilistic Predicates**. Yao Lu et al. SIGMOD 2018.

[1] **NoScope**: Optimizing Neural Network Queries over Video at Scale. Daniel Kang et al. VLDB 2017.

[2] Accelerating Machine Learning Inference with **Probabilistic Predicates**. Yao Lu et al. SIGMOD 2018.

[1] **NoScope**: Optimizing Neural Network Queries over Video at Scale. Daniel Kang et al. VLDB 2017.

[2] Accelerating Machine Learning Inference with **Probabilistic Predicates**. Yao Lu et al. SIGMOD 2018.

[1] **NoScope**: Optimizing Neural Network Queries over Video at Scale. Daniel Kang et al. VLDB 2017.

[2] Accelerating Machine Learning Inference with **Probabilistic Predicates**. Yao Lu et al. SIGMOD 2018.

 $<(t_1, x_1, y_1, w_1, h_1),$ $(t_n, x_n, y_n, w_n, h_n) >$

V ŁAPKE W GÓREL

Find cars that rapidly decelerate

Find cars that rapidly decelerate

Given track A: select A if there is a 1 sec interval *I* such that, if v_1 is *A*'s velocity in first half of *I*, and v_2 is velocity in second half, then $v_1 - v_2$ exceeds a threshold.

APKE W GORE

Find bears catching salmon

Find bears catching salmon

Given bear *A* and salmon *B*: select (*A*, *B*) if *A* and *B* intersect for at least two seconds.

Find cars that run a red light

Find cars that run a red light

Given car A and red light B: select (A, B) if A starts in bottom-right and ends in top-left, and the interval of A is contained in the interval of B.

Object Detector

Object Detector

Low-Framerate Tracking: Matching Errors

Low-Framerate Tracking: Matching Errors

Low-Framerate Tracking: Predicate Errors

MIRIS: Fast Object Track Queries over Video

Key ideas:

- Track at low framerate; but may need to re-visit some intermediate frames
- Query Planning + Object Tracking
 - Parameterizable query-driven object tracking method
 - Query planner to select the parameters using AQP techniques

Low-Framerate Tracking: Matching Errors

Low-Framerate Tracking: Matching Errors

Filtering

- Remove groups of paths that we are sure do not satisfy the predicate
- Several filtering methods for planner to choose from: nearest-neighbor, RNN

Refinement: Address Predicate Errors

MIRIS: Fast Object Track Queries over Video

Key ideas:

- Track at low framerate; but may need to re-visit some intermediate frames
- Query Planning + Object Tracking
 - Parameterizable query-driven object tracking method
 - Query planner to select the parameters using AQP techniques

Select tracks satisfying *P*, with 99% accuracy.

Video Dataset

Select tracks satisfying *P*, with 99% accuracy.

Video Dataset

Select tracks satisfying P, with 99% accuracy.

Per-method threshold parameters

Evaluation: 9 Queries over 5 Video Sources

Diverse range of video sources:

- UAV: video captured by UAV over traffic junction
- Tokyo, Warsaw: video captured by fixed traffic camera
- Resort: video of a pedestrian walkway
- BDD: dashcam video

Four baselines:

- Overlap-based tracking [1]
- Kernel correlation filters (KCF) [2]
- FlowNet [3]
- Probabilistic predicates [4, 5, 6]

[1] Simple Online and Realtime Tracking. Alex Bewley et al. ICIP 2016.

[2] High-Speed Tracking with Kernelized Correlation Filters. Joao Henriques et al. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014.

[3] FlowNet: Learning Optical Flow with Convolutional Networks. Alexey Dosovitskiy et al. ICCV 2015.

[4] NoScope: Optimizing Neural Network Queries over Video at Scale. Daniel Kang et al. VLDB 2017.

[5] Accelerating Machine Learning Inference with Probabilistic Predicates. Yao Lu et al. SIGMOD 2018.

Four baselines:

- Overlap-based tracking [1]
- Kernel correlation filters (KCF) [2]
- FlowNet [3]
- Probabilistic predicates [4, 5, 6]

GNN: apply our tracker model without filtering, uncertainty resolution, and refinement

[1] Simple Online and Realtime Tracking. Alex Bewley et al. ICIP 2016.

[2] High-Speed Tracking with Kernelized Correlation Filters. Joao Henriques et al. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014.

[3] FlowNet: Learning Optical Flow with Convolutional Networks. Alexey Dosovitskiy et al. ICCV 2015.

[4] NoScope: Optimizing Neural Network Queries over Video at Scale. Daniel Kang et al. VLDB 2017.

[5] Accelerating Machine Learning Inference with Probabilistic Predicates. Yao Lu et al. SIGMOD 2018.

Conclusion

- MIRIS is an approach for efficiently executing object track queries on large video datasets
- Provides a 9x average speedup (at the highest accuracy levels)
- Code: https://favyen.com/miris/

