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ABSTRACT
Performing analytics tasks over large-scale video datasets is increas-
ingly common in a wide range of applications. These tasks generally
involve object detection and tracking operations that require apply-
ing expensive machine learning models, and several systems have
recently been proposed to optimize the execution of video queries
to reduce their cost. However, prior work generally optimizes exe-
cution speed in only one dimension, focusing on one optimization
technique while ignoring other potential avenues for accelerating
execution, thereby delivering an unsatisfactory tradeoff between
speed and accuracy. We propose MultiScope, a general-purpose
video pre-processor for object detection and tracking that explores
multiple avenues for optimizing video queries to extract tracks from
video with a superior tradeoff between speed and accuracy over
prior work. We compare MultiScope against three recent systems
on seven diverse datasets, and find that it provides a 2.9x average
speedup over the next best baseline at the same accuracy level.
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1 INTRODUCTION
Over the last decade, improvements in machine learning methods,
especially in convolutional neural networks (CNNs), have enabled
numerous applications that involve querying large-scale video data.
In particular, CNNs have been applied to accurately extract object
detections (bounding box positions of objects) and tracks (sequences
of bounding boxes over time) from video. Detections and tracks are
used in virtually all video analytics tasks, such as in traffic planning
to conduct turning movement counts (counting the number of cars
turning in each direction in each time interval), in autonomous
vehicle development to localize and track road signs, and in sports
analytics to derive statistics from the motion of players and balls.

However, object detection methods are GPU-intensive: for ex-
ample, on the $10,000 NVIDIA Tesla V100 GPU, the YOLOv3 object
detector [18] can process 960 × 540 video frames at 100 frames per
second (fps). A user with a large volume of video that needs to be
processed, say from hundreds of traffic cameras, would require one
GPU for every 3-4 video feeds. We could obtain some speedup by
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reducing the resolution and sampling rate at which the detector
processes video, e.g., sampling only five 640×480 frames per second
of video. However, the speedup that this provides is limited: accu-
racy drops off rapidly once the resolution is reduced far enough
that the objects of interest occupy only a few pixels in the frame, or
the sampling rate is low enough that objects move long distances
between successively sampled frames.

Thus, recent work in the data management community has pro-
posed systems that incorporate new optimizations for efficiently
analyzing video [1, 3, 8, 10]. However, these systems share several
drawbacks, which we expand on in Section 2: first, these systems
generally each propose tuning a single parameter to provide a
tradeoff between speed and accuracy, thereby optimizing perfor-
mance only on a single dimension. Then, although the systems
perform well against naive baselines that optimize on zero dimen-
sions (always detecting objects at the full resolution and native
video framerate), they provide a speed-accuracy curve that is often-
times comparable to simply varying only the detector resolution
and tracker sampling rate. Second, several systems introduce query-
driven optimizations that incorporate a slow query-specific execu-
tion phase that introduces substantial per-query latency, thereby
limiting practicality for exploratory analytics. For example, to opti-
mize limit queries, BlazeIt [9] first pre-processes video to build a
query-agnostic index, but then conducts a search phase that needs
to be repeated per-query and involves repeatedly applying an expen-
sive object detector; the query-specific phase may require several
minutes or even hours depending on the desired output cardinality
and index precision, which is unacceptably long for exploratory
queries. Thus, a general-purpose video pre-processor that optimizes
performance in multiple dimensions in order to efficiently extract
all object tracks in a query-agnostic way would be ideal: it would
allow users to efficiently answer exploratory queries by processing
the extracted tracks without additional expensive ML inference.

To address this need, we developed MultiScope. We show that
such a general-purpose pre-processor can in fact be achieved, while
remaining competitive in speed even with query-driven approaches.
MultiScope efficiently pre-processes raw video for downstream
video analytics tasks by extracting all object tracks of a user-specified
set of object categories from the video. Users can then efficiently
conduct exploratory analytics tasks by post-processing the tracks
computed by MultiScope, without requiring further video decoding
or ML inference; for example, a turning movement count query
could be performed by counting the tracks that match each turning
direction. To provide a superior speed-accuracy curve when infer-
ring tracks in video, MultiScope (1) incorporates novel adaptations
of two video analytics optimizations proposed in prior work; and
(2) integrates these methods into a cohesive system that is able to
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simultaneously consider multiple parameters to provide a greater
speedup while introducing less error than prior approaches.

We now detail these two aspects of our method. First, we develop
novel adaptions of two optimizations, proxy models [9, 10] and
reduced-rate tracking [1], to improve their robustness and speed
by incorporating recent progress in computer vision techniques.
Prior work in proxy models (NoScope [10]) trains fast classification
models to input low-resolution video and estimate whether or not
each frame contains at least one object detection; these models are
then employed to skip execution of the slower detector model on
frames where the proxy model has high confidence that there are
no objects. However, many video datasets consist of busy scenes
where there are objects in every frame, and proxy models provide
no speedup. We extend the proxy model method to a multi-scale
detection context [5], where we use a proxy model to not only
determine which frames contain objects, but also which spatial
regions of frames contain objects. Then, even in videos of busy
scenes, our method can still yield a speedup by only applying the
slower detector in small windows of the frame that contain objects.

Prior work in reduced-rate tracking (Miris [1]) proposes tech-
niques to process video at substantially reduced sampling rates
while still extracting accurate tracks. However, tracking models
used in prior work are limited: they only consider matching detec-
tions between pairs of frames at a time (the previous frame and a
new frame), and form tracks by creating chains of matches. Thus,
the model cannot leverage useful cues such as object motion (e.g.
velocity) that require analyzing multiple previous detections of an
object. We instead employ a recurrent model that is able to account
for information in multiple previous frames when matching detec-
tions in a new frame, and address challenges to apply such a model
in a reduced-rate tracking framework.

Second, we integrate these two novel techniques, along with a
simple detector resolution optimization, into a cohesive system by
applying a parameter tuning algorithm to choose multiple param-
eters across the three optimization methods, including the proxy
model threshold, tracking sampling rate, and detector resolution.

We evaluate MultiScope on 7 diverse datasets on a task involving
inferring all object tracks in video, and compare its performance in
terms of speed and accuracy against three baselines: Chameleon [8]
(which derives a speedup primarily by tuning resolution and sam-
pling rate), BlazeIt [9], and Miris [1]. Here, we apply BlazeIt and
Miris under their respective query-agnostic execution modes. We
find that MultiScope consistently offers the best speed-accuracy
tradeoff, and, when parameters are selected to obtain an accuracy
within 5% of the best-achieved accuracy (across the methods), yields
a 2.9x average speedup over the next fastest method. Moreover,
we find that MultiScope outperforms BlazeIt even when BlazeIt is
applied with its query-driven optimizations on limit queries with
small output cardinalities (a type of query which BlazeIt specifically
optimizes for) — BlazeIt only outputs a limited number of query
outputs, while MultiScope extracts all object tracks in the video,
yet MultiScope achieves similar accuracy at a similar speed.

Our contributions are:
• We develop two novel video analytics optimization tech-
niques, segmentation proxy models and recurrent reduced-
rate tracking, that improve on prior work by incorporating
new computer vision methods.

• We integrate these and other optimizations in a cohesive
system that greedily tunes multiple parameters to select
parameters providing high speed at every accuracy level.

• We show that MultiScope consistently offers the best speed-
accuracy tradeoff against three baselines across seven diverse
datasets when applied to infer all object tracks in video.
Furthermore, we find that MultiScope is able to extract all
tracks from video as fast as prior systems optimized for limit
queries can process a single limit query.

2 BACKGROUND
Recent systems proposed in the data management community for
efficiently analyzing video have two critical drawbacks: they opti-
mize performance only on a single dimension, and they propose
query-driven methods that introduce substantial per-query latency.
In this section, we detail these drawbacks.
Multiple Avenues for Optimization. The most substantial limi-
tation in prior work is that the proposed systems focus on accel-
erating execution with one particular new method, and thereby
ignore other important avenues for optimization. For example, No-
Scope [10] and BlazeIt [9] apply an object detector at a fixed video
resolution and sampling rate, and provide a tradeoff between speed
and accuracy only through a threshold on the confidence of a proxy
model that indicates the likelihood of there being at least one object
in each frame of video. While proxy models are effective for pro-
cessing videos of largely idle scenes that only rarely contain objects,
they provide no benefit for extracting tracks from busy videos that
have objects in every frame, since the proxy model cannot be used
to skip any portion of such videos. Even for idle scenes, optimizing
resolution and tracking sampling rate can provide an additional
speedup with little effect on accuracy. Thus, considering multiple
avenues for optimizing execution speed is crucial for a system to
perform well across diverse video datasets.

While some prior work, such as Chameleon [8], propose video
analytics systems that optimize performance over multiple param-
eters, these systems consider only video resolution and sampling
rate, and do not address challenges in incorporating more recent
optimizations such as proxy models and reduced-rate tracking.

In MultiScope, we propose a modular execution pipeline and
parameter tuning architecture that consists of three components:
an object detection module, a proxy model module, and a recurrent
reduced-rate tracking module. The MultiScope parameter tuner se-
lects parameters across these modules to provide the best tradeoff
between speed and accuracy. By accounting for the multiple avail-
able avenues for optimizing execution, MultiScope substantially
improves execution time over prior work.
Query-driven Methods. Prior work such as BlazeIt and Miris in-
corporate a slow, query-specific phase that needs to be repeated
for each query. In these systems, this phase involves applying an
expensive object detector over selected frames, and thus intro-
duces substantial per-query latency, limiting their practicality for
exploratory analytics. If the overall cost of executing a few queries
can nevertheless be reduced, this per-query latency may be worth it
for some users. However, we will show that MultiScope can extract
all object tracks from video in the same time that it takes BlazeIt to
answer just one limit query.
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Figure 1: Overview of the MultiScope workflow. 60 one-
minute clips are sampled from the dataset to form training
and validation sets. The user provides ground truth data in
each validation clip, e.g. by annotating counts of objects fol-
lowing each of three spatial patterns. The tuner outputs a
sequence of parameter configurations that offer a tradeoff
between speed and accuracy. The user selects one configura-
tion (one point along curve) to apply on the entire dataset.

3 MULTISCOPE
MultiScope is a general-purpose video pre-processor for exploratory
video analytics tasks that involve object detections or tracks. Given
a video dataset, MultiScope efficiently and accurately extracts all
object tracks from the video: its output is a set of tracks {𝑡1, . . . , 𝑡𝑛},
where each track 𝑡𝑖 = (𝐶𝑘 , ⟨𝑑1, . . . , 𝑑𝑚𝑖

⟩) is a unique object of some
category𝐶𝑘 (e.g., car or pedestrian) visible in the video represented
as a sequence of detections, and each detection 𝑑𝑖 = (𝑡, 𝑥,𝑦,𝑤, ℎ)
specifies a timestamp 𝑡 and a bounding box where the object ap-
pears. MultiScope is thus similar to work in multi-object track-
ing [4, 13, 20], but provides substantially faster execution speed by
incorporating several diverse optimizations. After pre-processing
video with MultiScope, users can rapidly answer queries by post-
processing the computed tracks, without needing additional video
decoding or ML inference. Four example queries that can directly
be answered in traffic camera video from extracted object tracks
are: (1) find cars that decelerate at 5m/s2 or more (hard braking);
(2) find frames with at least three buses and three cars; (3) find the
average number of cars visible in the video over time; (4) find the
average number of unique cars over time (i.e., the traffic volume).

3.1 Workflow
Before detailingMultiScope’s design, in this sectionwe first describe
the workflow of applyingMultiScope on a new video dataset (Figure
1). Users first sample training and validation sets from the dataset,
which each consist of many sampled clips of a certain length — in
our implementation, we sample one hour of video consisting of
60 one-minute clips for each of the training and validation sets.
MultiScope uses the training set to train proxy models, and uses
the validation set to select parameters.
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Figure 2: MultiScope execution pipeline architecture. The
tracker selects which frames to process. To detect objects
in each sampled frame, the segmentation proxy model de-
termines which windows of the frame may contain objects,
and the detector runs in thosewindows. Parameters selected
by the tuner are shown in grey.

The user then provides a metric and corresponding ground truth
for evaluating the accuracy of tracks extracted by various Multi-
Scope parameter configurations in each validation clip. This ground
truth could correspond to the outputs of an automatic “oracle”
pipeline where we apply an object detector and tracker at the na-
tive video resolution and framerate. This strategy is proposed in
NoScope [10] to avoid the need for hand-labeling. However, we will
show in Section 4 that without a metric that leverages hand-labeled
data, the degree of error in tracks produced automatically by these
noisy oracles is unbounded, making it impossible for the user to
judge what accuracy level is acceptable. Thus, alternatively, the
user could hand-label the ground truth. For example, the user can
provide track labels, where the user draws bounding boxes around
all objects of interest in each clip, and labels sequences of boxes
that correspond to the same objects. However, this type of data is
tedious to hand-label. As a third alternative, the user can provide
labels for the number of unique objects that are visible in the clip,
broken down based on certain spatial patterns (e.g. count the num-
ber of cars that pass a junction under each turning direction). These
labels can be annotated more quickly — on some datasets, just 20
minutes to label a one-hour validation set — and we will show that
they still enable MultiScope to produce accurate tracks.

The MultiScope parameter tuner will then experiment with vari-
ous parameter configurations and evaluate the speed and accuracy
when executing the pipeline under each configuration over the
validation set. The tuner begins with the slowest possible configu-
ration (which may or may not yield the highest accuracy), and then
greedily selects parameters that yield speedups with the smallest re-
ductions in accuracy. The output of this process is a speed-accuracy
curve, where each point along the curve corresponds to one pa-
rameter configuration. The user can then select a point on the
speed-accuracy curve, and MultiScope will extract tracks over the
entire video dataset using the corresponding parameters.

3.2 Architecture
We now introduce the MultiScope architecture (Figure 2) at a high
level. The execution pipeline consists of three modules, where each
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Figure 3: Summary of our novel segmentation proxy model
method. A proxy model inputs a video frame at a low res-
olution, and scores each cell in the frame with the likeli-
hood that the cells intersects a detection. Positive cells after
thresholding are grouped into rectangular windows, and the
object detector is applied only in those windows.

module exposes several parameters that influence speed and accu-
racy. First, a segmentation proxy model determines which frames
and which parts of frames contain objects, so that a more expen-
sive object detector can be executed only on those regions. This
module is configured with the input resolution of the proxy model,
and a threshold on the proxy model confidence that determines
how confident the model must be before skipping the processing of
portions of frames. Second, the detection module applies an object
detection model, and is configured with the model architecture (e.g.,
YOLO [17] or Mask R-CNN [6]), input resolution, and detection con-
fidence threshold. Lastly, sitting on top of the other two modules,
the recurrent reduced-rate tracking method decides which frames
should be processed for computing object detections, and groups
detections of the same object across different frames to produce
object tracks. The tracking module is configured with a sampling
gap that specifies the rate at which frames should be processed.

Additionally, MultiScope includes a parameter tuner that outputs
a speed-accuracy curve of parameter configurations using a greedy
algorithm. After training and validation sets are sampled, and the
evaluation metric for the validation clips is provided by the user,
MultiScope initializes by training a range of proxy models and a
recurrent tracking model, and then executing the tuner.

Below,we introduce our novel segmentation proxymodelmethod
in Section 3.3 and our recurrent reduced-rate tracking method in
Section 3.4. We then detail the MultiScope tuner in Section 3.5.

3.3 Segmentation Proxy Model
In prior work, proxy models are applied to determine which frames
should be processed to compute object detections. For example,
NoScope [10] trains a proxy model to classify whether or not a
video frame contains at least one object. Then, NoScope skips ob-
ject detection processing on frames where the proxy model has
sufficiently low confidence. The proxy model is substantially faster
than the object detector since it inputs video at a lower resolution,
and, to a lesser extent, since it employs a shallower model archi-
tecture; thus, this yields a speedup in videos where a large fraction
of frames contain zero objects. However, we find that many video

datasets contain relevant objects in every frame — for example,
video of a traffic junction may continuously contain cars if the
junction is busy. Classification proxy models provide no speedup
in such videos since no frames can be skipped entirely.

Intuitively, though, proxy models still could provide a benefit by
identifying regions of frames that contain no objects, and skipping
object detection processing on those regions. Then, if the video
contains many segments where the camera frame is sparsely (spa-
tially) populated by objects, this method can provide a substantial
speedup: as long as the proxy model can accurately distinguish
regions with objects from regions without objects at a lower resolu-
tion than that at which the object detector can accurately compute
bounding box detections, then although the detector must still be
applied on each frame, it can be applied only in small windows
where the proxy model determines that objects are present.

In this section, we detail our novel segmentation proxy model
method that implements this idea. We employ a segmentation CNN
model architecture, which processes an image and outputs a score
at each grid cell of pixels in the image (e.g., every 32 × 32 cell). We
train the model to classify whether each cell intersects at least one
detection. Then, during inference, we aim to only apply the detector
on “positive” cells where the proxy model has high confidence, i.e.,
where the score exceeds a threshold parameter 𝐵proxy.

However, there are several challenges with applying the detector
in this way. First, objects may span multiple adjacent cells, and the
object detector can only be efficiently applied on GPUs on rectangu-
lar inputs. Thus, after using the proxy model to determine a set of
positive cells that may contain detections, we must aggregate these
cells together into rectangular groups such that the rectangles cover
all of the positive cells; we can then apply the object detector in
these rectangles. Second, the object detector is much slower when
applied on variable-dimension inputs, since high detection perfor-
mance on GPUs relies heavily on batching many equal-dimension
inputs together. While input padding is often used to ensure all
inputs are the same dimension, in our scenario, this would erase
the time savings from applying the detector on small regions of
a video frame. Instead, we develop an algorithm that determines
ahead of time a small number (three in our implementation) of fixed
window sizes, and initializes the detector on the GPU to execute at
each of those sizes. Then, during inference, for each frame of video
where we need to compute detections, we select rectangles sized
at one of the pre-selected window sizes to cover the positive cells
determined by the proxy model. Figure 3 summarizes our approach.

Model Architecture.We employ a simple, standard segmentation
CNN architecture for the proxy model. Our model consists of a five-
layer encoder followed by a two-layer decoder. The encoder inputs
the video frame, and applies a series of five strided convolutional
layers, producing features at 1/32 the resolution of the input. The
decoder applies two additional convolutional layers, and its output
is a classification score at each 32 × 32 cell of the input image
indicating the likelihood that the cell intersects an object. We opt
for a 32×32 cell size since objects are usually comparable or larger in
size, and since this yields few enough cells so that the data does not
become unwieldy when we group cells into rectangular windows.

Training. As in prior work, we use the object detection outputs of
a best-accuracy parameter configuration 𝜃best as rough labels for
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training the segmentation proxy model, where the model should
output a score close to 1 at cells that intersect a detection, and 0 at
other cells. 𝜃best is a configuration of parameters in the MultiScope
pipeline that provides the best accuracy (which may still be far
from 100%). We detail the selection of 𝜃best in the next sub-section.

Before training the proxy model, we first compute object detec-
tions 𝐷 (𝑡 ) = {𝑑 (𝑡 )1 , . . . , 𝑑

(𝑡 )
𝑛 } using 𝜃best on each frame 𝐼𝑡 in the

training set of video. Then, during training, we generate input-
output training examples by first sampling a frame 𝐼𝑡 from the
training set where |𝐷 (𝑡 ) | > 0, i.e., at least one detection was output
by the best-accuracy configuration. We construct classification la-
bels for 𝐼𝑡 corresponding to the detections in 𝐷 (𝑡 ) : at each 32 × 32
cell, the label is 1 if there is some detection 𝑑 (𝑡 )

𝑖
∈ 𝐷 (𝑡 ) that inter-

sects the cell, and 0 otherwise.
Prior to training the proxy model, we cannot be certain how

accurate the model will be at a certain model input resolution —
different resolutions, such as inputting 416 × 256 or 224 × 128
frames (which yield 13 × 8 and 7 × 4 output grids, respectively),
may provide tradeoffs between speed and accuracy. Thus, we train
several proxymodels at various pre-determined resolutions (a range
of five resolutions in our implementation), and leave the resolution
as a parameter for the tuner to select from this range. Although
we train multiple models, the training phase requires <10 minutes
before convergence of all five models because all input resolutions
are much lower than the native video resolution.
Best-accuracyConfiguration Selection.As discussed above,Mul-
tiScope requires the outputs of a best-accuracy configuration 𝜃best
to train proxy models. 𝜃best is simply a selection of parameters
for the MultiScope pipeline that yields highest accuracy over the
validation set on the user-provided metric, which we can use to
obtain object detections and tracks in the training set of video for
the purpose of training models. These detections and tracks may
contain errors, but nevertheless correspond to the best accuracy we
can obtain through automatic labeling. To select these parameters,
we begin by evaluating the accuracy of the slowest possible con-
figuration on the validation set (using the metric and ground truth
provided by the user), i.e., the configuration with no segmentation
proxy model, maximum object detector resolution, and maximum
sampling rate. Then, we repeatedly reduce the detector resolution
by 15% on each dimension and re-evaluate accuracy until the accu-
racy decreases, and keep the resolution providing the best achieved
accuracy. We then reduce the sampling rate in a similar procedure:
we repeatedly reduce the rate by 2x and re-evaluate accuracy until
accuracy drops. This procedure is crucial because we find that accu-
racy is oftentimes higher at lower resolutions. We do not consider
employing a proxy model for 𝜃best since the proxy model never
improves accuracy, and because at this stage the proxy models have
not yet been trained. Since the MultiScope tracking model has also
not yet been trained, we use the heuristic SORT tracker [2] in 𝜃best,
which tracks objects based on bounding box overlap.
Inference. The proxy model inference procedure is configured
by two parameters: the model input resolution (which determines
which of the several trained proxy models to use) and a confidence
threshold 𝐵proxy on the segmentation outputs. We will discuss
selecting these parameters in Section 3.5. During inference, on each
frame of video, we apply the proxy model to compute classification

scores on each 32 × 32 cell. After thresholding the scores by 𝐵proxy,
we derive a binary grid consisting of a (possibly empty) set of
positive cells where the output scores exceeded 𝐵proxy. These cells
are ones in which we must apply the object detector. The final step
in the inference procedure is to select rectangular windows of the
video frame in which to apply the detector. These windows should
cover the positive cells, but should do so tightly to minimize the
execution time needed to apply the detector over the windows. We
will discuss this final step in two sections below: grouping cells
into rectangular windows of certain sizes during inference, and
determining ahead of time the fixed set of window sizes at which
we will run the object detector.

Grouping Cells during Execution. On a frame 𝐼𝑡 , the proxy
model yields a set of positive cells 𝑋 (𝑡 ) = {𝑥 (𝑡 )1 , . . . , 𝑥

(𝑡 )
𝑛 }. We

assume we are given a fixed set of window sizes at which the de-
tector will run, 𝑆 = {(𝑤1, ℎ1), . . . , (𝑤𝑘 , ℎ𝑘 )}, as well as the detector
execution time of each size, 𝑇𝑤,ℎ . We will detail how we decide on
𝑆 prior to execution in the next section. Our aim is to find a set of
rectangular windows 𝑅𝑡 = {𝑟1, . . . , 𝑟𝑚} that covers all of the cells
in 𝑋 (𝑡 ) . Here, each 𝑟𝑖 is a 4-tuple (𝑟𝑖 .𝑥, 𝑟𝑖 .𝑦, 𝑟𝑖 .𝑤, 𝑟𝑖 .ℎ) that specifies
the position and size of the rectangle, where (𝑟𝑖 .𝑤, 𝑟𝑖 .ℎ) ∈ 𝑆 . Let
𝑒𝑠𝑡 (𝑅𝑡 ) =

∑
𝑟𝑖 ∈𝑅𝑡 𝑇𝑟𝑖 .𝑤,𝑟𝑖 .ℎ be the estimated execution time of ap-

plying the detector in these windows. Then, in particular, we want
the optimal set of rectangles 𝑅∗ (𝐼𝑡 ; 𝑆) that minimizes 𝑒𝑠𝑡 (𝑅𝑡 ).

We approximate the optimal solution using a density-based
agglomerative clustering method. Essentially, each cluster corre-
sponds to a proposed rectangle, and our clustering procedure will
repeatedly greedily check whether two clusters can be combined
to form a merged cluster that would be faster to process through
the object detector than processing the two original clusters sep-
arately. We initialize a cluster 𝐶𝑖 for each connected component
of positive cells. Note that we do not create one cluster per cell:
because objects may span across cells, we want connected compo-
nents of positive cells to be contained inside the same rectangle.
We then iterate over the clusters. For each cluster𝐶𝑖 , we identify its
closest neighbor 𝐶 𝑗 . We create a proposed merged cluster 𝐶merged,
and identify the smallest-area window size (𝑤,ℎ) that contains the
bounding box of 𝐶merged (i.e., can cover all of the positive cells in
𝐶merged). For every other cluster 𝐶𝑘 , we check if we can add 𝐶𝑘 to
𝐶merged without needing a larger window size. Finally, to determine
whether to incorporate the proposed cluster 𝐶merged, we compare
the estimated time to process𝐶merged (i.e.,𝑇𝑤,ℎ) with the sum of the
time to process the individual clusters (based on the smallest-area
window sizes in 𝑆 that contain the bounding box of each cluster).
If the execution time for 𝐶merged is smaller, then we remove the
individual clusters and add 𝐶merged. We repeatedly loop over the
clusters until we perform a pass without any new merges.

After clustering terminates, we construct a set of rectangular
windows 𝑅 by creating one rectangle for each cluster.

Determining Fixed Set ofWindow Sizes. Prior to execution, we
decide the fixed set of window sizes 𝑆 = {(𝑤1, ℎ1), . . . , (𝑤𝑘 , ℎ𝑘 )}
(of a predetermined cardinality 𝑘 = 3 that is configured based on
available GPU memory) at which to run the object detector, so
that we can take advantage of the substantial speed savings from
batch execution of the detector on the GPU. The optimal set of
window sizes 𝑆∗ is the set that yields the highest execution speed
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in expectation over video segments sampled uniformly from the
dataset.When computing 𝑆 , to simplify the problem, we assume that
our proxy model performs perfectly (i.e., positive cells correspond
directly to the locations of object detections). Then, it follows that
𝑆∗ = argmin𝑆

∑
𝑡 𝑒𝑠𝑡 (𝑅∗ (𝐼𝑡 ; 𝑆)). Intuitively, 𝑆∗ should tightly cover

the locations of objects in video frames, so that on most frames, we
can apply the detector only in small windows where objects are
present. Our aim is to pick 𝑆 so that the resulting execution speed
is close to that of 𝑆∗.

To do so, we first initialize 𝑆 to only contain the size correspond-
ing to the entire video frame — we always include this maximum
window size in the set so that the option of simply applying the
detector on the entire frame is always available. We assume for now
that we have a function 𝑡𝑜𝑡_𝑡𝑖𝑚𝑒 (𝑆) that estimates the expected
execution time of a set 𝑆 ; we will detail our approach for imple-
menting 𝑡𝑜𝑡_𝑡𝑖𝑚𝑒 (𝑆) below. Then, to pick the remaining window
sizes, we employ a greedy approach that iteratively selects one win-
dow size at a time to add to 𝑆 : on each iteration, we select the size
(𝑤,ℎ) that minimizes 𝑡𝑜𝑡_𝑡𝑖𝑚𝑒 (𝑆 + {(𝑤,ℎ)}). We try all possible
dimension (𝑤,ℎ) that are smaller than the video frame and where
𝑤 and ℎ are both multiples of 32.

It remains to implement 𝑡𝑜𝑡_𝑡𝑖𝑚𝑒 (𝑆). For each image 𝐼𝑡 in the
training set of video, we will compute an estimate 𝑖𝑚_𝑡𝑖𝑚𝑒 (𝑆, 𝐼𝑡 ) of
the execution time for that frame, and then compute 𝑡𝑜𝑡_𝑡𝑖𝑚𝑒 (𝑆)
as the sum

∑
𝑡 𝑖𝑚_𝑡𝑖𝑚𝑒 (𝑆, 𝐼𝑡 ) over the training set. To simplify

𝑖𝑚_𝑡𝑖𝑚𝑒 (𝑆, 𝐼𝑡 ), we assume that the proxy model will perfectly pro-
duce positive cells matching the positions of object detections com-
puted by 𝜃best in 𝐼𝑡 . Then, 𝑖𝑚_𝑡𝑖𝑚𝑒 (𝑆, 𝐼𝑡 ) should equal 𝑒𝑠𝑡 (𝑅(𝐼𝑡 ; 𝑆)),
where we define 𝑅(𝐼𝑡 ; 𝑆) as the set of rectangular windows com-
puted using our method for grouping cells detailed above.

3.4 Recurrent Reduced-Rate Tracking
Prior work (Miris [1]) applies reduced-rate tracking to speed up
the grouping of frames into object tracks in a query-driven context
where it is assumed that a query consisting of a predicate on object
tracks is provided, e.g., finding tracks of cars in traffic camera
footage that travel north to south through a junction. Reduced-
rate tracking applies an object detector at greatly reduced sampling
rates (e.g. 1 fps instead of 25 fps), and attempts to accurately recover
groups of detections of the same object.

The method in Miris has two limitations. First, it relies on cap-
turing additional detections at high sampling rates to predict the
position and time where a track first becomes visible, along with
that where it is no longer visible. This step is needed since, when
tracking at reduced rates, the first and last detections observed
in the track may be a second before or after the object actually
enters or leaves the camera frame; thus, for example, a car that
traveled north to south through a junction may first be seen in
the middle of the junction, resulting in the track being excluded
from the north-to-south query. While the procedure of “refining”
tracks by computing additional detections is effective for extracting
tracks under predicates that only select small subsets of tracks, it
becomes cost-prohibitive when extracting all tracks from video,
which is the objective of MultiScope. Second, Miris employs a graph
neural network (GNN) model that only compares detections in two
consecutive frames at a time to produce probabilities that each pair

of detections across the frames correspond to the same object. Al-
though this simplifies the training process and the overall tracking
architecture, it limits accuracy when tracking at low sampling rates,
since, unlike a recurrent model, the GNN model cannot exploit
motion and other patterns observed in multiple previous frames
when matching detections in a new frame to existing track prefixes.

We propose a recurrent reduced-rate tracking method in Mul-
tiScope to address these challenges. First, we train a recurrent
tracking network similar in design to architectures used in state-
of-the-art multi-object tracking methods in the computer vision
literature. A recurrent model inputs a sequence of data step-by-step,
and produces a corresponding output sequence; here, the recurrent
tracker processes video one frame at a time, inputting the new
object detections in each successive frame and outputting the asso-
ciations between those detections and previously observed tracks.
Unlike prior work, though, we use a novel specialized training pro-
cess that we propose to ensure the model is robust when applied
at varying reduced sampling rates. Second, rather than apply the
track refinement methods introduced in Miris to accurately localize
the start and end of each track, we propose estimating the start and
end position based on the average path of the most similar tracks
computed in the training set. To do so efficiently, we cluster and
index the training set tracks ahead of time so that similar tracks
can be looked up quickly during inference.
Model Architecture. We use a recurrent tracking model architec-
ture that is comparable to that used in recent work in multi-object
tracking [11]. The tracker inputs a video sequence ⟨𝐼1, . . . , 𝐼𝑛⟩ and
object detections computed by the detector over the sequence,
where 𝐷 (𝑡 ) = {𝑑 (𝑡 )1 , . . . , 𝑑

(𝑡 )
𝑛𝑡 } denotes the detections computed

in frame 𝐼𝑡 . The goal of the tracker is to assign a track ID to each
detection so that detections of the same object are all assigned the
same track ID. To apply the model, we iterate over the frame se-
quence, maintaining a set of active track prefixes 𝐴 = {𝑠1, . . . , 𝑠𝑚}
computed up until the previous frame. Processing begins on 𝐼1,
where we initialize a new track prefix 𝑠𝑖 = ⟨𝑑 (1)

𝑖
⟩ for each detec-

tion in 𝐷 (1) . On a successive frame 𝐼𝑡 , we apply a neural network
model to compute a score 𝑝 (𝑡 )

𝑖, 𝑗
indicating the likelihood that each

detection 𝑑 (𝑡 )
𝑗

∈ 𝐷 (𝑡 ) corresponds to each track prefix 𝑠𝑖 . We apply
the Hungarian algorithm to match detections with tracks based on
these scores, and add each detection to the track that it matches
with. If a detection 𝑑 (𝑡 )

𝑗
does not match with any track, we initialize

a new track prefix 𝑠 = ⟨𝑑 (𝑡 )
𝑗

⟩ and add it to 𝐴.
Our model has three components. First, we compute detection-

level features that describe each detection 𝑑 = (𝑥,𝑦,𝑤,ℎ). This
component applies a CNN to process the image content of the de-
tection (i.e., the portion of the frame contained in the bounding box
that 𝑑 specifies) into a compact feature vector representation. Then,
the detection-level feature vector for 𝑑 is the concatenation of the
representation computed by the CNN with the 4D spatial bounding
box coordinates (𝑥,𝑦,𝑤,ℎ). Second, we compute track-level fea-
tures that describe each track prefix. A track 𝑠 = ⟨𝑑1, . . . , 𝑑𝑛⟩ is a
sequence of detections, so it is natural to use an RNN for this com-
ponent. We compute the detection-level features for each detection
in 𝑠 , and apply an RNN over those features. We use the final output
of the RNN as the track-level features. Third, we compute the scores
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𝑝
(𝑡 )
𝑖, 𝑗

matching the detection 𝑑 (𝑡 )
𝑗

with 𝑠𝑖 . This component applies
a matching network consisting of several fully connected layers
that inputs the detection-level features of 𝑑 (𝑡 )

𝑗
and the track-level

features of 𝑠𝑖 , and outputs a single score.

Training. Typically, tracking models are trained on ground truth
labels annotated at the full video framerate. However, we do not
have ground truth labels, and we require our tracker to be effective
at several possible reduced sampling rates. To address the first issue,
as with training the segmentation proxy models, we use outputs of
the best-accuracy configuration 𝜃best from Section 3.3 as a rough
ground truth for training. Let 𝑆∗ = {𝑠∗1, . . . , 𝑠

∗
𝑛} be the set of tracks

computed by 𝜃best over the training set of video.
To train a model that will be robust even when track prefixes are

captured at various reduced sampling rates, we construct training
examples that consist of detection sequences sampled from some
𝑠∗
𝑖
∈ 𝑆∗ with diverse spacing. During inference, we will process

video at some sampling gap, where each gap is a power of two, and
a gap 𝑔 specifies that one out of every 𝑔 frames should be processed
(𝑔 = 1 corresponds to processing the video at its native framerate).
Let 𝐺 = ⟨1, 2, 4, . . . , 2𝑛⟩ be the maximal gap sequence, i.e., we will
not track at sampling gaps higher than 2𝑛 during inference. Then,
to create a training example, in addition to sampling a track 𝑠 ∼ 𝑆∗,
we sample a gap 𝑔 ∼ 𝐺 . We then iteratively sub-sample detections
from 𝑠 , beginning from its first detection, such that each following
detection is at least 𝑔 frames after the previous detection.

We have shown how to generate examples for training the model.
However, if we do not provide any temporal information to the
model, then when matching a detection 𝑑 with a track prefix 𝑠 , the
model cannot, for example, predict the position of 𝑠 at the current
frame based on its velocity in preceding frames, since doing so
would necessitate multiplying this velocity by the time elapsed be-
tween 𝑑 and the last detection in 𝑠 . Thus, we augment the detection-
level features of 𝑑 to include the number of frames 𝑡elapsed between
𝑑 and some preceding detection, to enable the model to account
for temporal information. When computing track-level features of
𝑠 = ⟨𝑑1, . . . , 𝑑𝑛⟩, the value of 𝑡elapsed for 𝑑𝑖 is the number of frames
between 𝑑𝑖−1 and 𝑑𝑖 . When computing detection-level features for
a detection 𝑑

(𝑡 )
𝑗

in the current frame 𝐼𝑡 , 𝑡elapsed is the number of
frames between 𝐼𝑡 and the previously processed frame. Providing
this additional input enables the model to more robustly compute
scores 𝑝 (𝑡 )

𝑖, 𝑗
when using reduced-rate tracking.

Inference. Before applying the tracker on a video dataset, we
assume that the MultiScope tuner (Section 3.5) has selected a gap
𝑔 ∈ 𝐺 . We decode video at a framerate corresponding to the gap
𝑔 to obtain a sequence of frames ⟨𝐼0, 𝐼𝑔 , 𝐼2𝑔 , . . .⟩. On each frame 𝐼𝑡 ,
we first compute a set of object detections 𝐷 (𝑡 ) in the frame using
the segmentation proxy model and object detector components.
We then apply the tracker model to compute scores 𝑝 (𝑡 )

𝑖, 𝑗
between

detections 𝑑 (𝑡 )
𝑗

∈ 𝐷 (𝑡 ) and track prefixes 𝑠𝑖 , apply the Hungarian
algorithm to derive a matching between detections and tracks based
on these scores, and update the tracks based on the matching.

Note that we do not use the variable rate selection technique
in Miris, which tracks objects not at a single gap 𝑔 but at a vari-
able gap that changes depending on the tracker confidence. We

Figure 4: Rather than refine the start and end of tracks cap-
tured at high sampling gaps by processing additional frames,
we estimate the start and end position based on similar
tracks seen in the training set. Here, blue lines show clusters
computed from the training set tracks, red lines show tracks
captured at a high sampling gap, and yellow lines show ex-
tensions to the tracks added by our refinement method.

conducted preliminary experiments to evaluate the effectiveness
of the variable technique when incorporated into MultiScope, but
found the accuracy comparable to simply using a fixed gap when
employing our recurrent tracking model.
Refinement. The recurrent reduced-rate tracking method that
we have introduced improves accuracy when tracking objects at
reduced sampling rates. However, one crucial issue with tracks ex-
tracted at low sampling rates is that their first and last detection will
be offset from the start and end of the object’s actual trajectory. This
is most problematic when extracting tracks in video captured from
fixed cameras, because oftentimes, video analytics tasks over such
video involve spatial predicates on the first and last detections in
tracks: for example, performing a turning movement count in video
of a traffic junction necessitates counting the number of tracks of
cars that start and end at each pair of roads incident on the junction.
Simply extrapolating a track to the frame boundary is insufficient
since tracks may start or end at the horizon, or anywhere in the
frame due to an occlusion.

Prior work [1] proposes processing additional frames to refine
tracks. However, this becomes cost-prohibitive when extracting all
tracks from video. Instead, we observe that in fixed video (where the
offset is most problematic), we can generally estimate the start and
end of a track by comparing the portion of a track captured at a low
sampling rate against known tracks captured at the native framerate.
We show an example in Figure 4. Then, a simple algorithm for
refining tracks would be to find the k-nearest neighbors 𝑘𝑛𝑛(𝑠) of a
track 𝑠 among tracks captured by the best-accuracy configuration,
𝑆∗, and estimate the start and end of 𝑠 as the median start and end
of tracks in 𝑘𝑛𝑛(𝑠).

However, computing pairwise distances between tracks grows
more expensive as 𝑆∗ increases in size, and while we could sample a
subset of tracks from 𝑆∗ to use for k-nearest neighbor computation
during inference, this reduces accuracy for infrequently-occurring
paths. To speed up k-nearest neighbor lookups, we cluster tracks
in 𝑆∗ prior to inference, and construct a spatial index over cluster
centers (which are paths). Clustering reduces the number of dis-
tances that must be computed, so that redundant tracks that follow
the same path in the video are merged into one cluster.

In our approach, we begin by clustering the tracks in 𝑆∗ using
DBSCAN. To apply DBSCAN, we must define the distance metric
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between tracks, as well as how to compute the center of a cluster.We
use a simple distance metric: given 𝑠1 and 𝑠2, we compute 𝑁 points
evenly spaced along each track, yielding sequences of points 𝑃 (𝑠1)
and 𝑃 (𝑠2), and define 𝑑 (𝑠1, 𝑠2) = 1

𝑁

∑𝑁
𝑖=1 eucl(𝑃 (𝑠1) [𝑖], 𝑃 (𝑠2) [𝑖]),

i.e., as the average distance between corresponding points. Here,
eucl(𝑝1, 𝑝2) is the Euclidean distance between 2D points. In our
implementation, 𝑁 = 20. We define the center of a cluster of tracks
𝐶 = {𝑠1, . . . , 𝑠𝑛} as a path 𝑠 = ⟨𝑝1, . . . , 𝑝𝑁 ⟩ of 𝑁 points, where 𝑝𝑖 is
the average of points in {𝑃 (𝑠) [𝑖] |𝑠 ∈ 𝐶}, i.e., the average position of
the 𝑖th evenly spaced point computed among tracks in the cluster.

DBSCAN produces a set of clusters. We then build a simple
spatial grid index over the cluster centers, where each grid cell
maps to a list of paths that pass through that cell. During inference,
we approximate the k-nearest neighbor lookup for a computed
track 𝑠 = ⟨𝑑1, . . . , 𝑑𝑛⟩ as follows. We first use the index to identify
several cluster centers that pass close to 𝑑1 and 𝑑𝑛 . We compute the
distance between each of those cluster centers and 𝑠 , and keep the
𝑘 = 10 closest cluster centers, where a cluster of 𝑛 tracks counts 𝑛
times. Finally, we extend 𝑠 with a start and end detection computed
by taking the median coordinate on each dimension of the start
and end points across the clusters, weighted by cluster sizes.

3.5 Joint Parameter Tuning
Each module in the MultiScope pipeline is governed by several
parameters. TheMultiScope tuner is responsible for selecting values
for each of these parameters. Specific parameters include:

• The detection module is configured by the object detector
model architecture (e.g. YOLOv3 or Mask R-CNN), input
resolution, and confidence threshold.

• The proxy model module is configured by the input resolu-
tion and confidence threshold.

• The tracking module is configured by the sampling gap 𝑔.
The output of the tuner is a sequence of configurations Θ =

⟨𝜃1, . . . , 𝜃𝑛⟩, where each 𝜃𝑖 represents a setting of the above pa-
rameters. Θ forms a speed-accuracy tradeoff curve, and the goal of
the tuner is for it to be as close as possible to the Pareto-optimal
frontier of the space of all possible configurations. After the tuning
process completes, the user will pick a configuration 𝜃𝑖 along the
output curve to use for execution over the rest of the dataset.

A brute force approach would be to compute the validation set
accuracy and speed of every possible configuration, under some
search granularity for real-valued parameters. However, depend-
ing on the search granularity, there may be tens of thousands of
potential configurations, since the search space is exponential in
the number of parameters.

Instead, we adopt an iterative greedy algorithm. Our method is
similar to that used in prior work such as in Chameleon [8], but
incorporates a modular architecture to accommodate the increased
number of parameters in our execution pipeline. We begin with a
slow but accurate configuration, and on each iteration, we indepen-
dently update different subsets of parameters to offer a speedup,
test the accuracy of each update, and choose the update that offers
the best accuracy.

We initialize 𝜃1 = 𝜃best as the best-accuracy configuration (Sec-
tion 3.3), i.e., the parameters that yield the best possible accuracy
on the validation set, but poor execution speed. On each iteration,

given the current configuration 𝜃𝑖 , the tuner queries each module
and requests a new configuration where the parameters for that
module have been updated to provide an overall speedup of approx-
imately 𝑆 over 𝜃𝑖 (we use 𝑆 = 30% in our implementation, meaning
the next configuration should be around 30% faster). This yields
three candidate configurations 𝜃𝑖+1,detection, 𝜃𝑖+1,proxy, 𝜃𝑖+1,tracking,
where each reflects updates to the parameters of one module that
provide the desired overall speedup. Then, the tuner executes each
candidate configuration over the validation set to measure accuracy.
We set 𝜃𝑖+1 to the best-accuracy candidate, and iteratively repeat
this procedure. By repeatedly choosing parameter changes that
provide the smallest drop in accuracy for a fixed desired speedup,
this approach produces an output Θ that approximates the Pareto
frontier. If there are𝑚 modules and we seek a curve of 𝑛 configura-
tions, then the algorithm uses 𝑂 (𝑚𝑛) trials on the validation set (𝑛
iterations where we test𝑚 candidates on each iteration).

The MultiScope tuner executes in two phases. First, during a
caching phase, each module caches information that it will need to
answer the tuner requests for next candidate configurations (i.e., to
compute a configuration 𝜃𝑖+1,module that is 𝑆 faster than 𝜃𝑖 ). Then,
during the tuning phase, we apply the greedy algorithm detailed
above that produces Θ. Below, we detail how each module operates
during the caching and tuning phases.

3.5.1 Detection Module. Because the object detector is generally
the slowest component of the pipeline, increasing object detection
speed by 𝑆 usually corresponds to an overall speedup of almost 𝑆 .
Then, at a high level, our strategy in the detection module during
the tuning phase is to simply find the object detector configuration
that offers the highest accuracy among configurations that are at
least 𝑆 faster than the previous configuration.

Let 𝐴 = {𝑎1, . . . , 𝑎𝑛} be the set of model architectures (e.g.
YOLOv3 [18],Mask R-CNN [6], etc.), and let𝑅 = {(𝑤1, ℎ1), . . . , (𝑤𝑚, ℎ𝑚)}
be the set of input resolutions. Then, during the caching phase, for
each architecture 𝑎𝑖 and each input resolution (𝑤 𝑗 , ℎ 𝑗 ), we evaluate
the execution time 𝑡𝑖, 𝑗 and validation accuracy 𝛼𝑖, 𝑗 of the corre-
sponding configuration, where parameters for other modules are
taken from 𝜃best. During tuning, given a configuration 𝜃𝑘 that uses
architecture 𝑎𝑖 and input resolution (𝑤 𝑗 , ℎ 𝑗 ) for the detection mod-
ule, we identify the choice of 𝑎𝑖′ and (𝑤 𝑗 ′, ℎ 𝑗 ′) with maximum 𝛼𝑖′, 𝑗 ′

such that 𝑡𝑖′, 𝑗 ′ ≤ (1 − 𝑆)𝑡𝑖, 𝑗 , i.e., a new architecture and resolution
that offers the highest accuracy among the choices that yield a
speedup of at least 𝑆 over the previous selection.

3.5.2 Proxy Model Module. In the proxy model module, we need
to pick two parameters: the model’s input resolution, and the con-
fidence threshold that specifies when the output score at a cell is
high enough to mark that cell positive (and require object detector
processing over the cell). One complication here is that speed is not
directly related to the number of positive cells, since cells must first
be grouped into rectangular windows where the object detector
will be applied. On the other hand, if we can reduce the area of
these windows by 𝑆 , then this would speedup detector runtime by
approximately 𝑆 , and thus provide an overall speedup close to 𝑆 .

We follow a similar approach as the detection module: during
caching, we estimate the runtime and proxy model recall on the
validation set at each resolution and threshold, and during tuning,
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we use these estimates to update parameters from the previous con-
figuration. We define recall as the fraction of object detections that
are covered by rectangular windows; during tuning, we will pick
the resolution and threshold that have highest recall among choices
with runtime at least 𝑆 faster than the previous configuration.

We first cache the per-cell proxy model classification scores for
each resolution (𝑤𝑖 , ℎ𝑖 ) on every frame in the validation set, along
with the detections computed by 𝜃best. Let 𝑇proxy,𝑖 be the runtime
of the proxy model at each resolution. Then, for each threshold 𝐵 𝑗 ,
we compute rectangular windows using the cell grouping method
from Section 3.3 on each frame. Let 𝑅𝑖, 𝑗 = {𝑟1, . . . , 𝑟𝑛} be the set
of rectangles computed across the frames at a given resolution
and threshold. Then, our runtime estimate for this resolution and
threshold is 𝑇proxy,𝑖 +

∑
𝑘 𝑇𝑟𝑘 .𝑤,𝑟𝑘 .ℎ , i.e., the proxy model runtime

added to the detector runtime, which we estimate based on the
rectangle sizes. The recall is the fraction of detections computed by
𝜃best that are covered by rectangles in 𝑅𝑖, 𝑗 .

3.5.3 Tracking Module. The tracking module exposes a single pa-
rameter, the sampling gap 𝑔. We can obtain an overall 𝑆 speedup
over the previous configuration by adjusting 𝑔 so that the tracker
processes 𝑆 fewer frames. In particular, during tuning, we compute
a new sampling gap by multiplying 𝑔 by 𝑆 and rounding up to the
nearest power of two.

4 EVALUATION
We now evaluate MultiScope on 7 diverse video datasets against
three baselines: Chameleon [8], BlazeIt [9], and Miris [1]. In our
main results in Section 4.1, we evaluate the methods on the task of
inferring all object tracks in video. While BlazeIt and Miris propose
query-driven optimizations, here, we first apply them under their
query-agnostic execution modes. Then, in Section 4.2, we bring
back these query-driven optimizations, and compare MultiScope
and BlazeIt on processing cardinality-limited frame-level queries (a
type of query that BlazeIt specifically optimizes for).
Datasets.We conduct experiments on 7 diverse video datasets. We
use the Tokyo, UAV, and Warsaw datasets from Miris [1], and the
Amsterdam and Jackson datasets from BlazeIt [9]. We also evaluate
MultiScope on two new datasets, Caldot1 and Caldot2, consisting
of video captured by California DOT cameras along two major
highways. UAV consists of video captured from an aerial drone,
while the other 6 datasets consist of video from fixed street-level
cameras. Amsterdam captures activity at a riverside plaza, Caldot1
and Caldot2 capture highway activity, while the other 4 datasets
capture city traffic junctions.

We sample three one-hour sets of 60 one-minute clips from
each dataset: a training set (for training models), a validation set
(for parameter tuning), and a hidden test set (for experimental
evaluation). Thus, we allow each method to select Pareto-optimal
configurations on the validation set, but report accuracy computed
over a test set that the methods do not observe until execution.
Measuring Accuracy. In prior work (e.g., BlazeIt [9]), the outputs
of a best-accuracy configuration 𝜃best are used as a noisy oracle
to evaluate approaches: the accuracy of a candidate configuration
𝜃 is measured by computing the relative similarity between its
outputs and the outputs of 𝜃best. However, without hand-labeled
ground truth, the degree of noise in the outputs of noisy oracles is
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Figure 5: Comparison betweenBlazeIt’s oracle configuration
and actual hand-labeled ground truth on counting unique
cars in 10 one-minute clips from the Jackson dataset. To the
right, a sedan is split into two output tracks (manilla and
blue) because it is not detected in intermediate frames.

unbounded. To demonstrate this, we hand-labeled the number of
unique cars in ten uniformly sampled one-minute clips from the
Jackson dataset, and compared these counts to the number of unique
tracks produced by the BlazeIt oracle (which applies a detector
and tracker at a high resolution and the native framerate). Here,
we obtain BlazeIt tracks from CSV files published directly by the
authors. We show results in Figure 5. The noisy oracle consistently
over-estimates the number of cars, providing an average accuracy
of only 72% over the ten clips. Figure 5 shows one source of errors,
where one car is counted multiple times because it is missed by
the detector in some frames. These results show that although the
noisy oracle method reduces the amount of hand-labeling needed
to execute a query, they hide an unbounded degree of error, and so
accuracy measurements computed using relative comparisons to
the noisy oracle are meaningless.

Instead, we hand-label ground truth data that consists of counts
of unique objects (of a dataset-specific object category, which is
cars in all 7 datasets) in each one-minute clip in the test set. In
each clip, these counts are broken down by dataset-specific spatial
patterns, where the number of patterns varies between 1 and 10 —
for example, in UAV, we annotate the number of cars that travel
through a junction in each of eight observed turning directions
(yielding 8 counts in each clip), while in Jackson, we simply count
the number of unique cars (just 1 count per clip). Then, we measure
accuracy by comparing the counts inferred from object tracks com-
puted by a video analytics method with the ground truth counts,
using percent accuracy averaged over both patterns and clips.

We also require an accuracy metric in the validation set for
parameter tuning, and, in practice, for informing users about the
performance of different candidate configurations. Like prior work,
MultiScope could in principle tune parameters using a noisy oracle;
however, as in the test set, this is impractical since the degree of
noise in the resulting accuracy measurements would lead to poor
and arbitrary decisions. Thus, we annotate counts in the one-hour
validation set as well. This is a highly effective strategy for users
to employ when applying MultiScope: annotation in the one-hour
validation set requires only between 20 and 60 person-minutes for
the 7 datasets we tested, and only needs to be conducted once per
dataset. Note that this is not a unique requirement of MultiScope: all
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Figure 6: Runtime-accuracy curves on the test set of each dataset. Each point is a parameter configuration for the method,
which is chosen based on performance in the validation set.

baselines require accuracy measurements both for selecting a set of
parameter configurations and for reporting the performance of each
configuration to the user; noisy ground truth would yield poorly
chosen configurations and would make it impossible for users to
judge whether a proposed configuration will provide sufficient true
accuracy. In fact, we argue that employing noisy oracles is a major
flaw in the experimental evaluations of prior work. We extend all
baselines (which we detail below) to use the count annotations
during parameter tuning.

Baselines.We compareMultiScope to three baselines. Chameleon [8]
explores performance under varying detector input resolutions and
sampling rates to select the best parameters for a simple object
detection pipeline. BlazeIt [9] applies classification and regression
proxy models to optimize video analytics performance. Miris [1]
applies variable framerate tracking under different error tolerances
to provide tradeoffs between speed and accuracy.

In our main results (Section 4.1), we evaluate the methods on the
task of extracting all tracks from video: while BlazeIt and Miris pro-
pose query-driven optimizations, they also have a query-agnostic
execution mode, which we use here; in BlazeIt, this is a NoScope-
like [10] mode where we skip detector processing on frames where
the proxy model score falls below a confidence threshold (indicat-
ing that the frame likely contains no objects), and in Miris, this
involves using a predicate that selects all tracks. Later, in Section
4.2, we will bring back these query-driven optimizations with an
evaluation on processing cardinality-limited frame-level queries.

For consistency and simplicity, we use our implementations of
the baselines. Each baseline includes a parameter selection phase
where parameters are chosen that provide the best accuracy at
several different throughput levels; we modify this phase in all
baselines to utilize the count-based ground truth data and metric
detailed above rather than “ground truth” computed automatically
through a noisy oracle, since the latter is error-prone.

Implementation.We store the training, validation, and test video
on a local SSD at a fixed resolution, which is 720 × 480 for Caldot1
and Caldot2 and 1280 × 720 for the other 5 datasets, encoded in
mp4 container with H264. The native video framerate ranges from
5 fps for UAV to 30 fps for Amsterdam and Jackson. The execu-
tion pipeline for all methods involves decoding the video using
ffmpeg, and processing decoded frames iteratively in a way that is
specific to each method. Frames are decoded at the object detector
resolution, so reducing the model input resolution may provide a
speedup both through faster model execution and through faster
video decoding (ffmpeg incorporates optimizations to decode lower
resolution frames more quickly, even though the source resolution
is fixed). After the last frame is decoded and processed, each method
outputs a set of extracted object tracks. The parameter selection
phase for all methods involves repeatedly applying the execution
pipeline with different parameter configurations.

4.1 Results
We now evaluate MultiScope against the 3 baselines on each of the
7 datasets. We measure runtime on a machine with one NVIDIA
Tesla V100 GPU and one Intel Xeon Gold 6142 CPU, and exclude
training costs of each method from the runtime, focusing only on
costs that grow linearly with the dataset size. We first apply the
parameter selection phase of each method on the validation set,
which yields a speed-accuracy curve consisting of several Pareto-
optimal configurations. We then apply each of these parameter
configurations on the unseen test set, yielding a test speed-accuracy
curve: the runtime of a configuration is its execution time over the
one-hour test set, and its accuracy is the percentage accuracy of its
output counts in each one-minute clip, averaged across 60 clips.

Figure 6 shows the results. To simplify the comparison between
the methods, we also summarize the results in Table 1: for each
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Table 1: Runtime in seconds of eachmethod on the test set of
each dataset, using the fastest candidate configuration that
provides accuracy within 5% of the best achieved accuracy.

Dataset MultiScope Chameleon BlazeIt Miris
Caldot1 40 209 990 533
Caldot2 38 123 803 129
Tokyo 37 84 823 123
UAV 99 188 323 -
Warsaw 49 422 867 249
Amsterdam 25 44 666 64
Jackson 44 41 618 82

dataset and method, we show the runtime of the fastest configura-
tion (among candidates selected using the validation set) providing
accuracy within 5% of the best achieved accuracy on the test set
(across all methods). We choose the 5% threshold since average
accuracy is computed over 60 accuracy samples (the test set con-
sists of 60 clips randomly sampled from the video dataset), and so
the variance in the sample mean implies that differences in accu-
racy less than 5% may not be meaningful. Thus, Table 1 highlights
the runtime that each method can achieve while maintaining an
accuracy close to the best accuracy achieved by any method.

MultiScope consistently performs comparably to or better than
the next best baseline across all seven datasets: it provides an aver-
age 2.9x speedup over the next best baseline in Table 1. Although
Chameleon and Miris offer good speed-accuracy tradeoffs on ev-
ery dataset, MultiScope provides better performance (especially
on Tokyo, UAV, Warsaw, Caldot1, and Caldot2), both through the
novel techniques employed in its segmentation proxy model and
recurrent tracker components, and simply by exploring a more
diverse range of ways to improve execution speed without impair-
ing accuracy. BlazeIt provides some degree of a tradeoff between
speed and accuracy on Amsterdam, Caldot1, and Caldot2; however,
it only yields two candidate configurations for the other datasets
because those datasets have objects visible in every frame (one
candidate applies the detector on every frame, while the other skips
the entire video and simply outputs 0 for all counts). Across all ac-
curacy levels, MultiScope is better than all other methods on 5 out
of 7 datasets; on Amsterdam and Jackson, it provides a comparable
speed-accuracy curve to Chameleon and Miris.
Other Costs. Here, we have focused on runtime costs that scale
linearly with the dataset size, ignoring sub-linear parameter tuning
and model training costs — e.g., training time is constant for a
particular model architecture and dataset, while tuning scales with
the square root of the dataset size (to maintain a fixed sampling
error bound). On Caldot1, MultiScope uses 19 minutes to sample
the one-hour training and validation sets, 4 minutes to train the
segmentation proxy models, 8 minutes to train the tracker model,
and 48 minutes for parameter tuning.
Ablation Study. In Figure 7, we conduct an ablation study of Mul-
tiScope on the Caldot1 test set, testing four successively more com-
plete implementations of MultiScope: in blue we start with our
parameter tuning method with only the object detection module; in
red we add a tracking module using the heuristic SORT [2] tracker;
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Figure 7: Ablation study of MultiScope.

Table 2: Comparison between BlazeIt and MultiScope on
finding 20 frames in the Jackson dataset with at least 4 cars.

Method BlazeIt MultiScope
Pre-processing Time (sec) 165 184
Query Time (sec) 44 1
Total Time (sec) 209 185
Accuracy 18/20 20/20

in yellowwe replace SORTwith our recurrent reduced-rate tracking
method; and in green we add the segmentation proxy model, which
corresponds to our full method. Each additional module improves
performance along a portion of the resulting speed-accuracy curve.

4.2 MultiScope over Query-Driven Methods
In the previous section, we applied BlazeIt and Miris in their query-
agnostic execution modes. However, query-time optimizations are a
major component of these methods. We now show that MultiScope
performs comparably to the query-driven method in BlazeIt for
optimizing limit query execution, even in a scenario where BlazeIt
is executed to extract just 20 matching frames, while MultiScope
extracts all tracks from the dataset (after which the query can be ef-
ficiently processed over the computed tracks). We apply MultiScope
and BlazeIt to extract any 20 frames from a five-hour subset of the
Jackson dataset where there are at least four cars in the bottom half
of the video. We also require the output frames to be spaced at least
five seconds apart from one another. We focus on the bottom half
of the video to avoid ambiguity issues associated with the horizon.
As before, we ignore training costs in both methods, and focus only
on execution runtime that grows linearly with the dataset size.

To apply BlazeIt, we train the proxy model to count the number
of cars in the bottom half of the input frame, and then compute the
count estimates on every frame in the five-hour dataset. Since the
proxy model operates on 64 × 64 frames, the cost of this phase is
dominated by video decoding (which is fast since we use ffmpeg to
directly decode 64 × 64 frames). BlazeIt optimizes this limit query
by applying the detector (using an input resolution that provides
the best accuracy, in our implementation) on frames in order from
highest-scoring to lowest-scoring until it encounters 20 frames
where the detector finds at least four cars in the bottom half.
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Figure 8: On the left, MOTA accuracy and runtime curves on
the Caldot1 test set. On the right, a scatterplot showing the
correlation between Count Accuracy and MOTA over candi-
date parameter configurations across methods.

To apply MultiScope, we first simply execute MultiScope to
extract all tracks from the dataset, using the fastest parameter
configuration among the candidates that yield accuracy within 5%
of the best-achieved accuracy. We then post-process the tracks by
picking 20 frames with at least four detections in the bottom half,
starting with frames where the tracks visible in the bottom half
have the highest minimum duration.

Table 2 shows the results. The pre-processing time in both meth-
ods (i.e., proxy model runtime in BlazeIt and track extraction time
in MultiScope) is dominated by video decoding. Thus, despite its
extensive limit query optimizations, BlazeIt provides no speedup
over MultiScope on this query, since it must first apply the proxy
model over the entire dataset. BlazeIt’s query runtime corresponds
to executing the object detector on 3,674 frames before finding 20
outputs; we exclude video decoding time in this number since we
have not optimized the query pipeline for random-access decoding.
We measure accuracy by manually confirming how many of the
20 frames output by each method actually contain four cars in the
bottom half. Two frames produced by BlazeIt contain spurious de-
tections, which MultiScope avoids by ignoring tracks that consist of
only a single detection. Nevertheless, the main conclusion from this
experiment is that MultiScope is able to accurately extract all tracks
from video in the same time that prior work requires for answering
a single limit query, even when the desired output cardinality is
small. After tracks are inferred, exploratory queries can be executed
in milliseconds with MultiScope instead of minutes with BlazeIt.

4.3 Count Accuracy vs MOTA
Up to now, we have focused on a count-based accuracy metric over
a hidden test set that corresponds to the user-provided labels on
the validation set. It is possible, though, that a method that scores
highly in terms of count accuracy does not actually provide high-
quality tracks. In this section, we show that this is not the case, and
that count accuracy and track quality are highly correlated.

To do so, we label bounding boxes in every frame of 4 one-
minute clips in the Caldot1 test set at 1 fps, along with track IDs for
each box. We then compare tracks inferred by MultiScope and the
baselines against the ground truth labels in terms of Multi-Object
Tracking Accuracy (MOTA) [15], which is a standard metric from
the computer vision community for comprehensively evaluating
the accuracy of inferred tracks. MOTA considers several factors,

including whether inferred bounding boxes match with ground
truth boxes, and whether ground truth tracks are split into multiple
inferred tracks or vice versa.

In Figure 8, we compute the MOTA of each candidate configura-
tion produced by each method over the 4 labeled Caldot1 clips. The
candidate configurations are derived by each method by optimizing
for count accuracy on the validation set. On the left, we plot MOTA
against runtime, and on the right, we plot MOTA against the cor-
responding count accuracy. The right chart shows that MOTA is
highly correlated with count accuracy across all of the methods,
while the left chart validates that MultiScope is effective at not only
recovering counts, but also at robustly extracting object tracks.

5 RELATEDWORK
Several systems have recently been proposed for performing video
analytics tasks over large-scale video datasets. NoScope [10] and
Probabilistic Predicates [14] propose training a classification proxy
model to input low-resolution video frames and quickly determine
whether the frame is relevant to the query (e.g., whether the frame
contains any detections of a particular object category); processing
of expensive machine learning models such as object detectors can
be skipped on frames where the proxy model is confident it does
not match the query. Video Monitoring Queries [12], Focus [7], and
several other works propose various extensions to the proxy model
technique. In particular, BlazeIt [9] employs an improved proxy
model architecture that provides higher accuracy, and proposes
techniques specialized for efficiently executing limit and aggregate
queries by post-processing the proxy model outputs. Other tech-
niques for optimizing video analytics tasks have been explored as
well. Chameleon [8] proposes optimizing the object detector input
resolution and sampling framerate to robustly extract detections
from a video dataset. Miris [1] proposes a variable rate tracking
method that processes video at substantially reduced framerates
when possible to accurately answer object track queries.

Our work is also related to two techniques explored extensively
in the computer vision community: multi-scale detection and re-
current multi-object tracking. MultiScope’s core contribution is
improving video query optimizations proposed in the data manage-
ment community by adapting and integrating these computer vision
techniques. Dynamic Zoom-in Networks [5] and AutoFocus [16]
propose to optimize object detection speed with a coarse-to-fine
architecture, where objects are first detected in a down-sampled
image, and portions of an image are processed at higher resolutions
if another model predicts this will yield a high accuracy gain. Re-
cent recurrent multi-object tracking methods include Deep Tracklet
Association [19] and Bilinear-LSTM [11].

6 CONCLUSION
In this paper, we have presented MultiScope, a video pre-processor
for exploratory video analytics queries. Compared to prior work,
MultiScope is faster, offering a 2.9x average speedup across 7 datasets
over the next best baseline at the same accuracy level; is more gen-
eral, enabling execution of any query that involves object detections
and tracks; and substantially reduces per-query execution time after
pre-processing, since queries can be answered by processing ex-
tracted tracks without additional video decoding and ML inference.
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