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ABSTRACT
Performing analytics tasks over large-scale video datasets is in-
creasingly common in a wide range of applications, from traffic
planning to sports analytics. These tasks generally involve object
detection and tracking operations that require pre-processing the
video through expensive machine learning models. To address this
cost, several video query optimizers have recently been proposed.
Broadly, these methods trade large reductions in pre-processing
cost for increases in query execution cost: during query execu-
tion, they apply query-specific machine learning operations over
portions of the video dataset. Although video query optimizers
reduce the overall cost of executing a single query over large video
datasets compared to naive object tracking methods, executing
several queries over the same video remains cost-prohibitive; more-
over, the high per-query latency makes these systems unsuitable
for exploratory analytics where fast response times are crucial.

In this paper, we present OTIF, a video pre-processor that effi-
ciently extracts all object tracks from large-scale video datasets. By
integrating several optimizations under a joint parameter tuning
framework, OTIF is able to extract all object tracks from video as fast
as existing video query optimizers can execute just one single query.
In contrast to the outputs of video query optimizers, OTIF’s outputs
are general-purpose object tracks that can be used to execute many
queries with sub-second latencies. We compare OTIF against three
recent video query optimizers, as well as several general-purpose
object detection and tracking techniques, and find that, across mul-
tiple datasets, OTIF provides a 6x to 25x average reduction in the
overall cost to execute five queries over the same video.
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1 INTRODUCTION
Over the last decade, improvements in machine learning methods,
especially in convolutional neural networks (CNNs), have enabled
numerous applications that involve querying large-scale video data.
In particular, CNNs have been applied to accurately extract object
detections (bounding box positions of objects) and tracks (sequences
of bounding boxes over time) from video. Detections and tracks are
used in virtually all video analytics tasks, such as in traffic planning
to conduct turning movement counts [6] (counting the number of
cars turning in each direction in each time interval), in autonomous
vehicle development to identify signs [28], and in sports analytics
to derive statistics from the motion of players and balls [24].

However, object detection methods are GPU-intensive: for ex-
ample, on the $10,000 NVIDIA Tesla V100 GPU, the YOLOv3 object
detector [20] can process 960 × 540 video frames at 100 frames
per second (fps). A user with a large volume of video that needs
to be processed, say from hundreds of traffic cameras, would re-
quire one GPU for every 3-4 video feeds captured at 30 fps. We
could obtain some speedup by reducing the resolution and sampling
rate at which the detector processes video, e.g., sampling only five
640 × 480 frames per second of video. However, this provides a
limited speedup: accuracy drops off rapidly once the resolution is
reduced far enough that the objects of interest occupy only a few
pixels in the frame, or the sampling rate is low enough that objects
move long distances between successively sampled frames.

Thus, recent work proposes video query optimizers that incorpo-
rate new approximate optimization techniques for efficiently ana-
lyzing video [1, 10–12]. However, while these systems substantially
reduce pre-processing cost, they incorporate slow query-specific ex-
ecution phases where portions of video are selected for processing
through expensive models. This introduces substantial per-query
latency: then, not only are these systems unsuitable for exploratory
analytics where fast response times are crucial, but they are also no
faster than naively processing every frame when executing several
queries over the same video. For example, to optimize frame-level
limit queries, TASTI [12] first pre-processes video to build a query-
agnostic index, but then conducts a search phase that needs to be
repeated per-query and involves repeatedly applying an expensive
detector; the query-specific phase may require several minutes or
even hours depending on the desired output cardinality and index
precision, which is unacceptably long for exploratory queries.

Rather than push computation from pre-processing to query
time, we propose instead focusing onminimizing the pre-processing
time needed to accurately extract object tracks from video. While
prior work has studied fast object tracking [4, 17, 22, 27], these
methods optimize execution time on one dimension instead of
considering multiple avenues for obtaining large speedups (e.g.,
reducing resolution, reducing framerate, and using proxy models).
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In this paper, we present OTIF, a video pre-processor that ef-
ficiently extracts all object tracks from large-scale video datasets.
Users can efficiently conduct exploratory analytics tasks by post-
processing the tracks computed by OTIF, without requiring fur-
ther video decoding or ML inference. To provide a superior speed-
accuracy curve when extracting tracks from video, OTIF (1) in-
corporates novel adaptations of two video analytics optimizations
proposed in prior work; and (2) integrates these methods into a
cohesive system that jointly tunes multiple parameters to provide a
greater speedup while introducing less error than prior approaches.

We now detail these two aspects of our method. First, we develop
novel variants of two optimizations, proxy models [10, 11] and
reduced-rate tracking [1], to improve their robustness and speed
by incorporating recent progress in computer vision techniques.
Prior work in proxy models (NoScope [11]) trains fast classification
models to input low-resolution video and estimate whether or not
each frame contains at least one object detection; these models are
then employed to skip execution of the slower detector model on
frames where the proxy model has high confidence that there are
no objects. However, many video datasets consist of busy scenes
where there are objects in every frame, and proxy models provide
no speedup. We extend the proxy model method to a multi-scale
detection context [5], where we use a proxy model to not only
determine which frames contain objects, but also which spatial
regions of frames contain objects. Then, even in videos of busy
scenes, our method can still yield a speedup by only applying the
slower detector in small windows of the frame that contain objects.

Prior work in reduced-rate tracking (Miris [1]) proposes tech-
niques to process video at substantially reduced sampling rates
while still extracting accurate tracks. However, tracking models
used in prior work are limited: they only consider matching detec-
tions between pairs of frames at a time (the previous frame and a
new frame), and form tracks by creating chains of matches. Thus,
the model cannot leverage useful cues such as object motion (e.g.,
velocity) that require analyzing multiple previous detections of an
object. We instead employ a recurrent model that is able to account
for information in multiple previous frames when matching detec-
tions in a new frame, and address challenges to apply such a model
in a reduced-rate tracking framework.

Second, we integrate these two novel techniques, along with a
simple detector resolution optimization, into a cohesive system by
applying a parameter tuning algorithm to choose multiple param-
eters across the three optimization methods, including the proxy
model threshold, tracking sampling rate, and detector resolution.

We evaluate OTIF on 7 diverse video datasets, and compare its
performance in terms of speed and accuracy against three video
query optimizers (BlazeIt [10], TASTI [12], and Miris [1]) and four
object detection and tracking baselines (NoScope [11], Chameleon [9],
CaTDet [17], and CenterTrack [26]) on both frame-level and object
track queries. Most significantly, we find that OTIF is able to extract
all tracks from video as fast as video query optimizers can execute
just one query. Since OTIF’s outputs are reusable across multiple
queries, OTIF provides a 6x to 25x average speedup at executing
5 queries over the same video, at the same level of accuracy. We
release the OTIF source code at https://github.com/favyen/otif .

In summary, our contributions are:

• We develop two novel video analytics optimization tech-
niques, segmentation proxy models and recurrent reduced-
rate tracking.

• We integrate these and other optimizations in a cohesive
system that greedily tunes multiple parameters to select
parameters providing high speed at every accuracy level.

• We show that OTIF is able to extract all tracks from video as
fast as current video query optimizers can execute a single
query. Thus, when executing multiple queries, OTIF provides
a substantial speedup.

2 RELATEDWORK
Video Analytics. Several systems have recently been proposed
for performing video analytics tasks over large-scale video datasets.
NoScope [11] and Probabilistic Predicates [16] propose training a
classification proxy model to input low-resolution video frames
and quickly determine whether the frame is relevant to the query;
processing of expensive object detectors can be skipped on frames
where the proxy model is confident it does not match the query.

Video Monitoring Queries [14], Focus [8], and several other
works propose various extensions to the proxy model technique.
In particular, BlazeIt [10] proposes techniques specialized for effi-
ciently executing limit and aggregate queries by post-processing
the proxy model outputs. However, proxy models in BlazeIt are
generally specialized for individual queries; thus, repeated per-
query video decoding and inference makes BlazeIt costly when
executing multiple queries. TASTI [12] proposes splitting the proxy
model into two components: a feature extractor that processes
video frames into embeddings that describe the objects that likely
appear in the frame, and a scoring model that determines how
likely a frame matches a query based on its embedding. The em-
beddings are query-agnostic, so the feature extractor only needs to
be applied once over the video; however, since the detector must
still be applied on many video frames during query execution for
most query types, TASTI remains costly when executing repeated
queries over the same video. In Section 4, we show that OTIF’s
tracker pre-processing outperforms NoScope, BlazeIt, and TASTI
even when executing just one query.

Tuning parameters for video storage and decoding to optimize
analytics performance has also been studied in systems such as
VStore [23]. Our work complements these methods by additionally
tuning parameters in the execution and inference pipeline.

Other techniques for optimizing video analytics tasks have been
explored as well. Chameleon [9] proposes optimizing the object
detector input resolution and sampling framerate to robustly ex-
tract detections from a video dataset. Miris [1] proposes a variable
rate tracking method that processes video at substantially reduced
framerates when possible to accurately answer object track queries.
In Section 4, we show that OTIF outperforms these methods as well.

Multi-Object Tracking. Our work is also related to object track-
ing methods such as Deep Tracklet Association [25] and Bilinear-
LSTM [13]. In contrast to these methods, which are designed for
high-accuracy but slow tracking in high-resolution video, OTIF
focuses on providing a good speed-accuracy tradeoff. More closely
related to our work, several methods study efficiently tracking ob-
jects through techniques such as updating object positions using
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Symbol Description
𝑠𝑖 An object track.
𝑑𝑖 An object detection.
𝐼𝑡 Video frame at timestamp 𝑡 .
𝜃 A configuration (settings for OTIF parameters).

𝜃best Configuration providing highest accuracy.
𝐵proxy Confidence threshold for segmentation proxy model.

𝑊 Window sizes used for detector execution.
𝑅𝑡 Rectangles in which we apply the detector on 𝐼𝑡 .
𝑆∗ Tracks computed using 𝜃best in the training set.
𝑔 Sampling gap: only process 1 in every 𝑔 frames.
𝐶 Parameter tuning granularity.

Table 1: Summary of key notation.

optical flow estimates [3, 4, 15, 22, 27]. We will show that OTIF
outperforms several of these methods, including CaTDet [17] and
CenterTrack [26], by integrating novel extensions of several opti-
mization methods in a joint parameter tuning framework.

Foreground Extraction and Multi-Scale Detection Our seg-
mentation proxy model method is related to several computer vi-
sion techniques. Foreground extraction methods seek to segment
the foreground and background of an image for image editing
and other tasks [21]. While these methods employ segmentation
models similar to our work, they do not address tuning the model
to complement a detector for efficient execution. Multi-scale de-
tection methods, including Dynamic Zoom-in Networks [5] and
AutoFocus [18], propose to optimize object detection speed with
a coarse-to-fine architecture, where objects are first detected in a
down-sampled image, and portions of an image are processed at
higher resolutions if the model predicts this will yield an accuracy
gain. Our method adapts these techniques for video query execu-
tion in diverse datasets, incorporating extensions such as dynamic
resolution and window size selection.

3 OTIF
OTIF is a general-purpose video pre-processor for exploratory video
analytics tasks that involve object detections or tracks. Given a
video dataset, OTIF efficiently and accurately extracts all object
tracks from the video: its output is a set of tracks {𝑠1, . . . , 𝑠𝑛}, where
each track 𝑠𝑖 = (𝐶𝑘 , ⟨𝑑1, . . . , 𝑑𝑚𝑖

⟩) is a unique object of some cat-
egory 𝐶𝑘 (e.g., car or pedestrian) represented as a sequence of
detections, and each detection 𝑑𝑖 = (𝑡, 𝑥,𝑦,𝑤, ℎ) specifies a times-
tamp 𝑡 and a bounding box where the object appears. After pre-
processing video with OTIF, users can rapidly answer queries by
post-processing the computed tracks, without needing additional
video decoding or ML inference. Example queries that can directly
be answered in traffic camera video from extracted object tracks in-
clude: (1) find cars that decelerate at 5m/s2 or more (hard braking);
(2) find frames with at least three buses and three cars; (3) find the
average number of cars visible in the video over time; (4) find the
average number of unique cars over time (i.e., the traffic volume).

We summarize key notation we use in this section in Table 1.
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Detector Conf: 0.25
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Proxy Model Threshold: 0.16384
Tracking Rate: 1/32 (0.78 fps)

Figure 1: Overview of the OTIF workflow. 60 one-minute
clips are sampled from the dataset to form training and vali-
dation sets. The user provides ground truth data in each val-
idation clip, e.g. by annotating counts of objects following
each of three spatial patterns. The tuner outputs a sequence
of parameter configurations that offer a tradeoff between
speed and accuracy. The user selects one configuration (one
point along curve) to apply on the entire dataset.

3.1 Workflow
Before detailing OTIF’s design, in this section we first describe
the workflow of applying OTIF on a new video dataset (Figure
1). Users first uniformly randomly sample training and validation
sets from the dataset, which each consist of many sampled clips of
a certain length—in our implementation, we sample one hour of
video consisting of 60 one-minute clips for each of the training and
validation sets. OTIF uses the training set to train proxy models,
and uses the validation set to select parameters.

The user then provides a metric and corresponding ground
truth for evaluating the accuracy of tracks extracted by various
OTIF parameter configurations in each validation clip. The ground
truth data may be hand-labeled, or may be automatically computed
through an “oracle” pipeline where we apply an object detector and
tracker at the native video resolution and framerate.

The OTIF parameter tuner will then experiment with various pa-
rameter configurations and evaluate the speed and accuracy when
executing the pipeline under each configuration over the validation
set. The tuner begins with the slowest possible configuration (which
may or may not yield the highest accuracy), and then greedily se-
lects parameters that yield speedups with the smallest reductions
in accuracy. The output of this process is a speed-accuracy curve,
where each point along the curve corresponds to one parameter con-
figuration. The user can then select a point on the speed-accuracy
curve, and OTIF will extract tracks over the entire video dataset
using the corresponding parameters.
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Figure 2: OTIF execution pipeline architecture. The tracker
selects which frames to process. To detect objects in each
sampled frame, the segmentation proxy model determines
which windows of the frame may contain objects, and the
detector runs in those windows. Parameters selected by the
tuner are shown in grey.

3.2 Architecture
We now introduce the OTIF architecture (Figure 2) at a high level.
The execution pipeline consists of three modules, where each mod-
ule exposes several parameters that influence speed and accuracy.
First, a segmentation proxy model determines which frames and
which parts of frames contain objects, so that a more expensive
object detector can be executed only on those regions. This module
is configured with the input resolution of the proxy model, and
a threshold on the proxy model confidence that determines how
confident the model must be before skipping the processing of
portions of frames. Second, the detection module applies an object
detection model, and is configured with the model architecture (e.g.,
YOLO [19] or Mask R-CNN [7]), input resolution, and detection con-
fidence threshold. Lastly, sitting on top of the other two modules,
the recurrent reduced-rate tracking method decides which frames
should be processed for computing object detections, and groups
detections of the same object across different frames to produce
object tracks. The tracking module is configured with a sampling
gap that specifies the rate at which frames should be processed.

Additionally, OTIF includes a parameter tuner that outputs a
speed-accuracy curve of parameter configurations using a greedy
algorithm. After training and validation sets are sampled, and the
evaluation metric for the validation clips is provided by the user,
OTIF initializes by training a range of proxy models and a recurrent
tracking model, and then executing the tuner.

Below,we introduce our novel segmentation proxymodelmethod
in Section 3.3 and our recurrent reduced-rate tracking method in
Section 3.4. We then detail the OTIF tuner in Section 3.5.

3.3 Segmentation Proxy Model
In prior work, proxy models are applied to determine which frames
should be processed to compute object detections. For example,
NoScope [11] trains a proxy model to classify whether or not a
video frame contains at least one object. Then, NoScope skips ob-
ject detection processing on frames where the proxy model has

Resize
Proxy
Model

Thresholding

Group
Cells

Object Detection in Windows

Figure 3: Summary of our novel segmentation proxy model
method. A proxy model inputs a video frame at a low res-
olution, and scores each cell in the frame with the likeli-
hood that the cells intersects a detection. Positive cells after
thresholding are grouped into rectangular windows, and the
object detector is applied only in those windows.

sufficiently low confidence. The proxy model is substantially faster
than the object detector since it inputs video at a lower resolution,
and, to a lesser extent, since it employs a shallower model archi-
tecture; thus, this yields a speedup in videos where a large fraction
of frames contain zero objects. However, we find that many video
datasets contain relevant objects in every frame — for example,
video of a traffic junction may continuously contain cars if the
junction is busy. Classification proxy models provide no speedup
in such videos since no frames can be skipped entirely.

Intuitively, though, proxy models still could provide a benefit by
identifying regions of frames that contain no objects, and skipping
object detection processing on those regions. Then, if the video
contains many segments where the camera frame is sparsely popu-
lated by objects, this method can provide a substantial speedup: as
long as the proxy model can accurately distinguish regions with
objects from regions without objects at a lower resolution than that
at which the object detector can accurately compute bounding box
detections, then although the detector must still be applied on each
frame, it can be applied only in small windows where the proxy
model determines that objects are present. For example, in Figure 3,
the proxy model is confident that only the top-left and bottom-right
regions of the frame contain objects, and so the detector can be
applied only on those small regions.

In this section, we detail our novel segmentation proxy model
method that implements this idea. We employ a segmentation CNN
model architecture, which processes an image and outputs a score
at each grid cell of pixels in the image (e.g., every 32 × 32 cell). We
train the model to classify whether each cell intersects at least one
detection. Then, during inference, we aim to only apply the detector
on “positive” cells where the proxy model has high confidence, i.e.,
where the score exceeds a threshold parameter 𝐵proxy.

However, there are several challenges with applying the detector
in this way. First, objects may span multiple adjacent cells, and the
object detector can only be efficiently applied on GPUs on rectangu-
lar inputs. Thus, after using the proxy model to determine a set of
positive cells that may contain detections, we must aggregate these
cells together into rectangular groups such that the rectangles cover



all of the positive cells; we can then apply the object detector in
these rectangles. Second, the object detector is much slower when
applied on variable-dimension inputs, since high detection perfor-
mance on GPUs relies heavily on batching many equal-dimension
inputs together. While input padding is often used to ensure all
inputs are the same dimension, in our scenario, this would erase
the time savings from applying the detector on small regions of
a video frame. Instead, we develop an algorithm that determines
ahead of time a small number (three in our implementation) of fixed
window sizes, and initializes the detector on the GPU to execute at
each of those sizes. Then, during inference, for each frame of video
where we need to compute detections, we select rectangles sized
at one of the pre-selected window sizes to cover the positive cells
determined by the proxy model, falling back to detecting objects in
the entire frame when doing so would be faster.

Model Architecture.We employ a simple, standard segmentation
CNN architecture for the proxy model. Our model consists of a five-
layer encoder followed by a two-layer decoder. The encoder inputs
the video frame, and applies a series of five strided convolutional
layers, producing features at 1/32 the resolution of the input. The
decoder applies two additional convolutional layers, and its output
is a classification score at each 32 × 32 cell of the input image
indicating the likelihood that the cell intersects an object. We opt
for a 32×32 cell size since objects are usually comparable or larger in
size, and since this yields few enough cells so that the data does not
become unwieldy when we group cells into rectangular windows.

Training. As in prior work, we use the object detection outputs of
a best-accuracy parameter configuration 𝜃best as rough labels for
training the segmentation proxy model, where the model should
output a score close to 1 at cells that intersect a detection, and 0
at other cells. 𝜃best is a configuration of parameters in the OTIF
pipeline that provides the best accuracy (which may still be far
from 100%). We detail the selection of 𝜃best in the next sub-section.

Thus, we first compute object detections 𝐷 (𝑡 ) = {𝑑 (𝑡 )1 , . . . , 𝑑
(𝑡 )
𝑛 }

using 𝜃best on each frame 𝐼𝑡 in the training set of video. Then, we
generate input-output training examples for the proxy model by
first sampling a frame 𝐼𝑡 from the training set where |𝐷 (𝑡 ) | > 0, i.e.,
at least one detection was output by the best-accuracy configura-
tion. We construct classification labels for 𝐼𝑡 corresponding to the
detections in 𝐷 (𝑡 ) : at each 32× 32 cell, the label is 1 if there is some
detection 𝑑 (𝑡 )

𝑖
∈ 𝐷 (𝑡 ) that intersects the cell, and 0 otherwise.

Prior to training the proxy model, we cannot be certain how
accurate the model will be at different resolutions—e.g., inputting
416 × 256 versus 224 × 128 frames (which yield 13 × 8 and 7 × 4
output grids, respectively) may provide tradeoffs between speed and
accuracy. Thus, we train proxy models at several pre-determined
resolutions (5 resolutions in our implementation), and leave the
resolution as a parameter for the tuner to set. Although we train 5
models, training requires <10 minutes for all models since all input
resolutions are much lower than the native video resolution.

Best-accuracyConfiguration Selection.As discussed above, OTIF
requires the outputs of a best-accuracy configuration 𝜃best to train
proxy models. 𝜃best is simply a selection of parameters for the OTIF
pipeline that yields highest accuracy over the validation set on the
user-provided metric. The detections and tracks that it computes

may contain errors, but nevertheless correspond to the best ac-
curacy we can obtain through automatic labeling. To select these
parameters, we begin by evaluating the accuracy of the slowest
possible configuration on the validation set (using the metric and
ground truth provided by the user), i.e., the configuration with no
segmentation proxy model, maximum object detector resolution,
and maximum sampling rate. Then, we repeatedly reduce the detec-
tor resolution to increase speed by a factor of𝐶 = 30% on each step,
and re-evaluate accuracy until the accuracy decreases, keeping the
resolution providing the best achieved accuracy. We then reduce
the sampling rate in a similar procedure: we repeatedly reduce the
rate to increase speed by𝐶 , and re-evaluate accuracy until accuracy
drops. This procedure is crucial because we find that accuracy is
oftentimes higher at lower resolutions. We do not consider employ-
ing a proxy model for 𝜃best since the proxy model never improves
accuracy, and because at this stage the proxy models have not yet
been trained. Since the tracking model has also not yet been trained,
we use the heuristic SORT tracker [2] in 𝜃best, which tracks objects
based on bounding box overlap.

Inference. The proxy model inference procedure is configured
by two parameters: the model input resolution (which determines
which of the several trained proxy models to use) and a confidence
threshold 𝐵proxy on the segmentation outputs. We will discuss
selecting these parameters in Section 3.5. During inference, on each
frame of video, we apply the proxy model to compute classification
scores on each 32 × 32 cell. After thresholding the scores by 𝐵proxy,
we derive a binary grid consisting of a (possibly empty) set of
positive cells where the output scores exceeded 𝐵proxy. These cells
are ones in which we must apply the object detector. The final step
in the inference procedure is to select rectangular windows of the
video frame in which to apply the detector. These windows should
cover the positive cells, but should do so tightly to minimize the
execution time needed to apply the detector over the windows. We
will discuss this final step in two sections below: grouping cells
into rectangular windows of certain sizes during inference, and
determining ahead of time the fixed set of window sizes at which
we will run the object detector.

Grouping Cells during Execution. On a frame 𝐼𝑡 , the proxy
model yields a set of positive cells 𝑋 (𝑡 ) = {𝑥 (𝑡 )1 , . . . , 𝑥

(𝑡 )
𝑛 }. We

assume we are given a fixed set of window sizes at which the detec-
tor will run,𝑊 = {(𝑤1, ℎ1), . . . , (𝑤𝑘 , ℎ𝑘 )}, as well as the detector
execution time of each size, 𝑇𝑤,ℎ . We will detail how we decide on
𝑊 prior to execution in the next section. Our aim is to find a set of
rectangular windows 𝑅𝑡 = {𝑟1, . . . , 𝑟𝑚} that covers all of the cells
in 𝑋 (𝑡 ) . Here, each 𝑟𝑖 is a 4-tuple (𝑟𝑖 .𝑥, 𝑟𝑖 .𝑦, 𝑟𝑖 .𝑤, 𝑟𝑖 .ℎ) that specifies
the position and size of the rectangle, where (𝑟𝑖 .𝑤, 𝑟𝑖 .ℎ) ∈𝑊 . Let
𝑒𝑠𝑡 (𝑅𝑡 ) =

∑
𝑟𝑖 ∈𝑅𝑡 𝑇𝑟𝑖 .𝑤,𝑟𝑖 .ℎ be the estimated execution time of ap-

plying the detector in these windows. Then, in particular, we want
the optimal set of rectangles 𝑅∗ (𝐼𝑡 ;𝑊 ) that minimizes 𝑒𝑠𝑡 (𝑅𝑡 ). Intu-
itively, in frames sparsely populated with small objects, 𝑅∗ should
include small rectangles covering the positive cells where objects
are located, while in densely packed frames, 𝑅∗ should simply in-
clude a single rectangle corresponding to the entire frame.

We find an approximation to 𝑅∗ using a density-based greedy
agglomerative clustering method. At a high level, we initialize
a cluster 𝑐𝑖 for each connected component of positive cells, and



repeatedly check whether two clusters can be combined to form a
merged cluster that would be faster to process through the object
detector than processing the two original clusters separately (i.e.,
whether merging would decrease 𝑒𝑠𝑡 (𝑅)). Once merging offers no
further improvement, the clustering procedure terminates, and we
create a set of rectangular windows 𝑅 by constructing one rectangle
for each final cluster.

Determining Fixed Set ofWindow Sizes. Prior to execution, we
decide the fixed set of window sizes𝑊 = {(𝑤1, ℎ1), . . . , (𝑤𝑘 , ℎ𝑘 )}
(of a predetermined cardinality 𝑘 = 3 set based on available GPU
memory) at which to run the object detector, so that we can take
advantage of the speed savings from batch detector execution on
the GPU. The optimal set of window sizes𝑊 ∗ is the set that yields
the lowest runtime in expectation over video segments sampled
uniformly from the dataset. When computing𝑊 , to simplify the
problem, we assume that our proxy model performs perfectly (i.e.,
positive cells correspond directly to the locations of object detec-
tions). Then, it follows that𝑊 ∗ = argmin𝑊

∑
𝑡 𝑒𝑠𝑡 (𝑅∗ (𝐼𝑡 ;𝑊 )). In-

tuitively,𝑊 ∗ should tightly cover the locations of objects in video
frames, so that on most frames, we can apply the detector only in
small windows where objects are present.

Similar to our approach for computing 𝑅𝑡 , we employ a greedy
algorithm to pick𝑊 so that the resulting runtime is close to that
provided by𝑊 ∗. At a high level, we first initialize𝑊 to only contain
the size corresponding to the entire video frame—we always include
this maximum window size in the set so that the option of simply
applying the detector on the entire frame is always available. We
then repeatedly greedily add the window size to𝑊 that provides
the greatest decrease to

∑
𝑡 𝑒𝑠𝑡 (𝑅(𝐼𝑡 ;𝑊 )), until |𝑊 | = 𝑘 .

3.4 Recurrent Reduced-Rate Tracking
Prior work (Miris [1]) applies reduced-rate tracking to speed up
tracking in a query-driven context, where it is assumed that a
query involving object tracks is provided, e.g., finding tracks of
cars in traffic camera footage that travel north to south through a
junction. Reduced-rate tracking applies an object detector at greatly
reduced sampling rates (e.g. 1 fps instead of 25 fps), and attempts
to accurately recover groups of detections of the same object.

The method in Miris has two limitations. First, Miris employs a
graph neural network (GNN) model that only compares detections
in two consecutive frames at a time to produce probabilities that
each pair of detections across the frames correspond to the same
object. Although this simplifies the training process and the overall
tracking architecture, it limits accuracy when tracking at low sam-
pling rates, since, unlike a recurrent model, the GNN model cannot
exploit motion and other patterns observed in multiple previous
frames when matching detections in a new frame to existing track
prefixes. Second, it relies on capturing additional detections at high
sampling rates to predict the position and time where a track first
becomes visible, along with that where it is no longer visible. This
step is needed since, when tracking at reduced rates, the first and
last detections observed in the track may be a second before or
after the object actually enters or leaves the camera frame; thus, for
example, a car that traveled north to south through a junction may
first be seen in the middle of the junction, resulting in the track
being excluded from the north-to-south query. While the procedure

of “refining” tracks by computing additional detections is effective
for extracting tracks under predicates that only select small subsets
of tracks, it becomes cost-prohibitive when extracting all tracks
from video, which is the objective of OTIF.

We propose a recurrent reduced-rate tracking method in OTIF
to address these challenges. First, we train a recurrent tracking
network similar in design to architectures used in state-of-the-art
multi-object tracking methods in the computer vision literature.
A recurrent model inputs a sequence of data step-by-step, and
produces a corresponding output sequence; here, the recurrent
tracker processes video one frame at a time, inputting the new object
detections in each successive frame and outputting the associations
between those detections and previously observed tracks. Unlike
prior work, though, we propose a novel specialized training process
to ensure the model is robust when applied at varying reduced
sampling rates. Second, rather than apply the track refinement
methods introduced in Miris to accurately localize the start and
end of each track, we propose estimating the start and end position
based on the average path of the most similar tracks computed in
the training set. To support efficient lookup of similar tracks, we
cluster and index the training set tracks ahead of time.
Model Architecture. We use a recurrent tracking model that
is comparable to that used in recent work in multi-object track-
ing [13]. The tracker inputs a video sequence ⟨𝐼1, . . . , 𝐼𝑛⟩ and object
detections computed by the detector over the sequence, where
𝐷 (𝑡 ) = {𝑑 (𝑡 )1 , . . . , 𝑑

(𝑡 )
𝑛𝑡 } denotes the detections computed in frame

𝐼𝑡 . The goal of the tracker is to assign a track ID to each detection
so that detections of the same object are all assigned the same track
ID. To apply the model, we iterate over the frame sequence, main-
taining a set of active track prefixes 𝐴 = {𝑠1, . . . , 𝑠𝑚} computed up
until the previous frame. Processing begins on 𝐼1, where we initial-
ize a new track prefix 𝑠𝑖 = ⟨𝑑 (1)

𝑖
⟩ for each detection in 𝐷 (1) . On a

successive frame 𝐼𝑡 , we apply a neural network model to compute a
score 𝑝 (𝑡 )

𝑖, 𝑗
indicating the likelihood that each detection 𝑑 (𝑡 )

𝑗
∈ 𝐷 (𝑡 )

corresponds to each track prefix 𝑠𝑖 . Wematch detections with tracks
based on these scores, and add each detection to the track that it
matches with. If a detection 𝑑

(𝑡 )
𝑗

does not match with any track,

we initialize a new track prefix 𝑠 = ⟨𝑑 (𝑡 )
𝑗

⟩ and add it to 𝐴.
Our model has three components. First, we compute detection-

level features that describe each detection 𝑑 = (𝑥,𝑦,𝑤,ℎ). This
component applies a CNN to process the image content of the de-
tection (i.e., the portion of the frame contained in the bounding box
that 𝑑 specifies) into a compact feature vector representation. Then,
the detection-level feature vector for 𝑑 is the concatenation of the
representation computed by the CNN with the 4D spatial bounding
box coordinates (𝑥,𝑦,𝑤,ℎ). Second, we compute track-level fea-
tures that describe each track prefix. A track 𝑠 = ⟨𝑑1, . . . , 𝑑𝑛⟩ is a
sequence of detections, so it is natural to use an RNN for this com-
ponent. We compute the detection-level features for each detection
in 𝑠 , and apply an RNN over those features. We use the final output
of the RNN as the track-level features. Third, we compute the scores
𝑝
(𝑡 )
𝑖, 𝑗

matching the detection 𝑑 (𝑡 )
𝑗

with 𝑠𝑖 . This component applies
a matching network consisting of several fully connected layers
that inputs the detection-level features of 𝑑 (𝑡 )

𝑗
and the track-level

features of 𝑠𝑖 , and outputs a single score.



Training. Typically, tracking models are trained on ground truth
labels annotated at the full video framerate. However, we do not
have ground truth labels, and we require our tracker to be effective
at several possible reduced sampling rates. To address the first issue,
as with training the segmentation proxy models, we use outputs of
the best-accuracy configuration 𝜃best from Section 3.3 as a rough
ground truth for training. Let 𝑆∗ = {𝑠∗1, . . . , 𝑠

∗
𝑛} be the set of tracks

computed by 𝜃best over the training set of video.
To train a model that will be robust even when track prefixes are

captured at various reduced sampling rates, we construct training
examples that consist of detection sequences sampled from some
𝑠∗
𝑖
∈ 𝑆∗ with diverse spacing. During inference, we will process

video at some sampling gap, where each gap is a power of two, and
a gap 𝑔 specifies that one out of every 𝑔 frames should be processed
(𝑔 = 1 corresponds to processing the video at its native framerate).
Let 𝐺 = ⟨1, 2, 4, . . . , 2𝑛⟩ be the maximal gap sequence, i.e., we will
not track at sampling gaps higher than 2𝑛 during inference. Then,
to create a training example, in addition to sampling a track 𝑠 ∼ 𝑆∗,
we sample a gap 𝑔 ∼ 𝐺 . We then iteratively sub-sample detections
from 𝑠 , beginning from its first detection, such that each following
detection is at least 𝑔 frames after the previous detection.

We have shown how to generate examples for training the model.
However, if we do not provide any temporal information to the
model, then when matching a detection 𝑑 with a track prefix 𝑠 , the
model cannot, for example, predict the position of 𝑠 at the current
frame based on its velocity in preceding frames, since doing so
would necessitate multiplying this velocity by the time elapsed be-
tween 𝑑 and the last detection in 𝑠 . Thus, we augment the detection-
level features of 𝑑 to include the number of frames 𝑡elapsed between
𝑑 and some preceding detection, to enable the model to account
for temporal information. When computing track-level features of
𝑠 = ⟨𝑑1, . . . , 𝑑𝑛⟩, the value of 𝑡elapsed for 𝑑𝑖 is the number of frames
between 𝑑𝑖−1 and 𝑑𝑖 . When computing detection-level features for
a detection 𝑑

(𝑡 )
𝑗

in the current frame 𝐼𝑡 , 𝑡elapsed is the number of
frames between 𝐼𝑡 and the previously processed frame. Providing
this additional input enables the model to more robustly compute
scores 𝑝 (𝑡 )

𝑖, 𝑗
when using reduced-rate tracking.

Inference. Before applying the tracker on a video dataset, we
assume that the OTIF tuner (Section 3.5) has selected a gap 𝑔 ∈ 𝐺 .
We decode video at a framerate corresponding to the gap 𝑔 to
obtain a sequence of frames ⟨𝐼0, 𝐼𝑔, 𝐼2𝑔, . . .⟩. On each frame 𝐼𝑡 , we
first compute a set of object detections 𝐷 (𝑡 ) in the frame using
the segmentation proxy model and object detector components.
We then apply the tracker model to compute scores 𝑝 (𝑡 )

𝑖, 𝑗
between

detections𝑑 (𝑡 )
𝑗

∈ 𝐷 (𝑡 ) and track prefixes 𝑠𝑖 , and match detections to
tracks based on the highest-scoring pairs. After tracker execution,
we prune tracks that consist of only a single detection, since such
tracks likely correspond to noisy detections.

Note that we do not use the variable rate selection technique in
Miris, which tracks objects not at a fixed gap 𝑔 but at a variable gap
that changes based on tracker confidence. In preliminary experi-
ments, when using our recurrent model, we found the accuracy of
the variable gap method comparable to simply using a fixed gap.
Refinement. The recurrent reduced-rate tracking method that
we have introduced improves accuracy when tracking objects at

Figure 4:We refine the start and end position of tracks based
on similar tracks seen in the training set. Here, blue lines
show clusters computed from the training set tracks, red
lines show tracks captured at a high sampling gap during
execution, and yellow lines show extensions to the tracks
added by our refinement method.

reduced sampling rates. However, one crucial issue with tracks
extracted at low sampling rates is that their first and last detection
will be offset from the start and end of the object’s actual trajec-
tory. This is primarily problematic when extracting tracks in video
captured from fixed cameras, because oftentimes, video analytics
tasks over such video involve spatial predicates on the first and
last detections in tracks: for example, performing a turning move-
ment count in video of a traffic junction necessitates counting the
number of cars that start and end at each pair of roads. Simply
extrapolating a track to the frame boundary is insufficient since
tracks may start or end at the horizon, or anywhere in the frame
due to an occlusion. On the other hand, queries involving moving
cameras are unlikely to contain such predicates, since the physical
location of a particular pixel is dynamic in moving cameras; thus,
tracks extracted by OTIF in moving camera footage can be used in
such queries without refinement.

Miris [1] proposes processing additional frames to refine tracks.
However, this is cost-prohibitive when extracting all tracks from
video. Instead, we observe that in fixed video (where refinement is
most needed), we can generally estimate the start and end of a track
by comparing the portion of a track captured at a low sampling rate
against known tracks captured at the native framerate. We show an
example in Figure 4. Then, a simple algorithm for refining tracks
would be to find the k-nearest neighbors 𝑘𝑛𝑛(𝑠) of a track 𝑠 among
tracks captured using 𝜃best in the training set, 𝑆∗, and estimate the
start and end of 𝑠 as the median start and end of tracks in 𝑘𝑛𝑛(𝑠).

However, computing pairwise distances between tracks grows
more expensive as 𝑆∗ increases in size, and while we could sample a
subset of tracks from 𝑆∗ to use for k-nearest neighbor computation
during inference, this reduces accuracy for infrequently-occurring
paths. To speed up k-nearest neighbor lookups, we cluster tracks
in 𝑆∗ prior to inference, and construct a spatial index over cluster
centers (which are paths). Clustering reduces the number of dis-
tances that must be computed, so that redundant tracks that follow
the same path in the video are merged into one cluster.

In our approach, we begin by clustering the tracks in 𝑆∗ using
DBSCAN. To apply DBSCAN, we must define the distance metric
between tracks, as well as how to compute the center of a cluster.We
use a simple distance metric: given 𝑠1 and 𝑠2, we compute 𝑁 points
evenly spaced along each track, yielding sequences of points 𝑃 (𝑠1)
and 𝑃 (𝑠2), and define 𝑑 (𝑠1, 𝑠2) = 1

𝑁

∑𝑁
𝑖=1 eucl(𝑃 (𝑠1) [𝑖], 𝑃 (𝑠2) [𝑖]),



i.e., as the average distance between corresponding points. Here,
eucl(𝑝1, 𝑝2) is the Euclidean distance between 2D points. In our
implementation, 𝑁 = 20. We define the center of a cluster of tracks
𝑐 = {𝑠1, . . . , 𝑠𝑛} as a path 𝑠 = ⟨𝑝1, . . . , 𝑝𝑁 ⟩ of 𝑁 points, where 𝑝𝑖 is
the average of points in {𝑃 (𝑠) [𝑖] |𝑠 ∈ 𝑐}, i.e., the average position of
the 𝑖th evenly spaced point computed among tracks in the cluster.

DBSCAN produces a set of clusters by iteratively grouping to-
gether sets of many tracks sharing similar high-density paths. We
then build a spatial index over the cluster centers. During inference,
we approximate the k-nearest neighbor lookup for a computed
track 𝑠 = ⟨𝑑1, . . . , 𝑑𝑛⟩ as follows. We first use the index to identify
several cluster centers that pass close to 𝑑1 and 𝑑𝑛 . We compute
the distance between each of those cluster centers and 𝑠 , and keep
the 𝑘 = 10 closest clusters. Finally, we extend 𝑠 with a start and
end detection computed by taking the median coordinate on each
dimension of the start and end points across the clusters, weighted
by cluster sizes.

3.5 Joint Parameter Tuning
As detailed above, each module in the OTIF pipeline is governed
by several parameters. The OTIF tuner is responsible for selecting
values for each of these parameters. The six parameters are:

• The detection module is configured by the object detector
model architecture (e.g. YOLOv3 or Mask R-CNN), input
resolution, and confidence threshold.

• The proxy model module is configured by the input resolu-
tion and confidence threshold.

• The tracking module is configured by the sampling gap 𝑔.

The output of the tuner is a sequence of configurationsΘ = ⟨𝜃1, . . . , 𝜃𝑛⟩,
where each 𝜃𝑖 represents a setting of the above parameters.Θ forms
a speed-accuracy tradeoff curve, and the goal of the tuner is for it
to be as close as possible to the Pareto-optimal frontier of the space
of all possible configurations. After the tuning process completes,
the user will pick a configuration 𝜃𝑖 along the output curve to use
for execution over the rest of the dataset.

Profiling every possible configuration would be cost-prohibitive
since the search space is exponential in the number of parameters.
Another naive approach would be to update parameters using a hill
climbing procedure, as in Chameleon [9]: starting with some initial
configuration, we could iteratively test small parameter updates,
selecting the updates that provide the best speed-accuracy tradeoff.
However, this too is cost-prohibitive: because of the number of
parameters in OTIF’s execution pipeline, and the presence of real-
valued parameters such as confidence thresholds, it would require
evaluating hundreds of configurations.

Instead, we adapt the hill climbing procedure by incorporating a
modular framework that reduces the number of updates that must
be tested on each iteration. Intuitively, since choices such as the
detector model architecture and detector confidence threshold are
closely entangled, batching these updates can reduce the number
of configurations that we must test. In our approach, we begin
with a slow but accurate configuration, and on each iteration, we
independently update different subsets of parameters to offer a
speedup, test the accuracy of each update on the validation set, and
choose the update that offers the best accuracy.

We initialize 𝜃1 = 𝜃best as the best-accuracy configuration (Sec-
tion 3.3), i.e., the parameters that yield the best possible accuracy
on the validation set, but poor execution speed. On each iteration,
given the current configuration 𝜃𝑖 , the tuner queries each mod-
ule and requests a new configuration where the parameters for
that module have been updated to provide an overall speedup of
approximately 𝐶 over 𝜃𝑖 , where 𝐶 is the parameter tuning coarse-
ness. For example, 𝐶 = 30% implies the next configuration should
be around 30% faster. This yields three candidate configurations
𝜃𝑖+1,detection, 𝜃𝑖+1,proxy, 𝜃𝑖+1,tracking, where each reflects updates to
the parameters of one module that provide the desired overall
speedup. Then, the tuner executes each candidate configuration
over the validation set to measure accuracy. We set 𝜃𝑖+1 to the
best-accuracy candidate, and iteratively repeat this procedure. By
repeatedly choosing parameter changes that provide the smallest
drop in accuracy for a fixed desired speedup, this approach pro-
duces an output Θ that approximates the Pareto frontier. If there
are𝑚 modules and we seek a curve of 𝑛 configurations, then the al-
gorithm uses 𝑂 (𝑚𝑛) trials on the validation set (𝑛 iterations where
we test𝑚 candidates on each iteration).

The parameter tuning coarseness 𝐶 must be chosen to balance
between being sufficiently fine-grained to effectively model the
speed-accuracy curve, and being coarse-grained to minimize the
number of iterations needed (i.e., parameter tuning time). We use
𝐶 = 30% in our implementation, since we find in preliminary ex-
periments that this provides a good tradeoff.

The OTIF tuner executes in two phases. First, during a caching
phase, each module caches information that it will need to answer
the tuner requests for next candidate configurations (i.e., to compute
a configuration 𝜃𝑖+1,module that is 𝐶 faster than 𝜃𝑖 ). Then, during
the tuning phase, we apply the greedy algorithm detailed above
that produces Θ. Below, we detail the operation of each module.

3.5.1 Detection Module. Because the object detector is generally
the slowest component of the pipeline, increasing object detection
speed by 𝐶 usually corresponds to an overall speedup of almost 𝐶 .
Then, at a high level, our strategy in the detection module during
the tuning phase is to simply find the object detector configuration
that offers the highest accuracy among configurations that are at
least 𝐶 faster than the previous configuration.

Let 𝐴 = {𝑎1, . . . , 𝑎𝑛} be the set of model architectures (e.g.
YOLOv3 [20],Mask R-CNN [7], etc.), and let𝑅 = {(𝑤1, ℎ1), . . . , (𝑤𝑚, ℎ𝑚)}
be the set of input resolutions. Then, during the caching phase, for
each architecture 𝑎𝑖 and each input resolution (𝑤 𝑗 , ℎ 𝑗 ), we evaluate
the execution time 𝑡𝑖, 𝑗 and validation accuracy 𝛼𝑖, 𝑗 of the corre-
sponding configuration, where parameters for other modules are
taken from 𝜃best. During tuning, given a configuration 𝜃𝑘 that uses
architecture 𝑎𝑖 and input resolution (𝑤 𝑗 , ℎ 𝑗 ) for the detection mod-
ule, we identify the choice of 𝑎𝑖′ and (𝑤 𝑗 ′, ℎ 𝑗 ′) with maximum 𝛼𝑖′, 𝑗 ′

such that 𝑡𝑖′, 𝑗 ′ ≤ (1 −𝐶)𝑡𝑖, 𝑗 , i.e., a new architecture and resolution
that offers the highest accuracy among the choices that yield a
speedup of at least 𝐶 over the previous selection.

3.5.2 Proxy Model Module. In the proxy model module, we need
to pick two parameters: the model’s input resolution, and the con-
fidence threshold that specifies when the output score at a cell is
high enough to mark that cell positive (and require object detector
processing over the cell). One complication here is that speed is not



directly related to the number of positive cells, since cells must first
be grouped into rectangular windows where the object detector
will be applied. On the other hand, if we can reduce the area of
these windows by 𝐶 , then this would speedup detector runtime by
approximately 𝐶 , and thus provide an overall speedup close to 𝐶 .

We follow a similar approach as the detection module: during
caching, we estimate the runtime and proxy model recall on the
validation set at each resolution and threshold, and during tuning,
we use these estimates to update parameters from the previous con-
figuration. We define recall as the fraction of object detections that
are covered by rectangular windows; during tuning, we will pick
the resolution and threshold that have highest recall among choices
with runtime at least 𝐶 faster than the previous configuration.

We first cache the per-cell proxy model classification scores for
each resolution (𝑤𝑖 , ℎ𝑖 ) on every frame in the validation set, along
with the detections computed by 𝜃best. Let 𝑇proxy,𝑖 be the runtime
of the proxy model at each resolution. Then, for each threshold 𝐵 𝑗 ,
we compute rectangular windows using the cell grouping method
from Section 3.3 on each frame. Let 𝑅𝑖, 𝑗 = {𝑟1, . . . , 𝑟𝑛} be the set
of rectangles computed across the frames at a given resolution
and threshold. Then, our runtime estimate for this resolution and
threshold is 𝑇proxy,𝑖 +

∑
𝑘 𝑇𝑟𝑘 .𝑤,𝑟𝑘 .ℎ , i.e., the proxy model runtime

added to the detector runtime, which we estimate based on the
rectangle sizes. The recall is the fraction of detections computed by
𝜃best that are covered by rectangles in 𝑅𝑖, 𝑗 .

3.5.3 Tracking Module. The tracking module exposes a single pa-
rameter, the sampling gap 𝑔. We can obtain an overall 𝐶 speedup
over the previous configuration by adjusting 𝑔 so that the tracker
processes𝐶 fewer frames. In particular, during tuning, we compute
a new sampling gap by dividing 𝑔 by 𝐶 and rounding up to the
nearest power of two.

4 EVALUATION
We now evaluate OTIF on 7 diverse video datasets against seven
baselines, including three video query optimizers (Miris [1], BlazeIt [10],
and TASTI [12]), three fast object detection and tracking methods
(NoScope [11], Chameleon [9], and CaTDet [17]), and one high-
accuracy multi-object tracker (CenterTrack [26]). In Section 4.1,
we first evaluate the methods on object track queries that Miris is
specifically designed to optimize; these queries select tracks satisfy-
ing predicates about the path or speed of a track. Then, in Section
4.2, we evaluate on frame-level queries that BlazeIt and TASTI are
specifically designed to optimize; these queries select video frames
satisfying predicates about the objects appearing in the frame.
Datasets. To robustly evaluate the methods, we employ a highly di-
verse benchmark consisting of 7 video datasets, including 5 datasets
from two prior works as well as 2 new datasets. We use the Tokyo,
UAV, and Warsaw datasets from Miris [1], and the Amsterdam and
Jackson datasets from BlazeIt [10]. We also evaluate OTIF on two
new datasets, Caldot1 and Caldot2, consisting of video captured by
California DOT cameras along two highways. UAV consists of video
captured from an aerial drone, while the other 6 datasets consist of
video from fixed street-level cameras. Amsterdam captures activity
at a riverside plaza, Caldot1 and Caldot2 capture highway activity,
while the other 4 datasets capture city traffic junctions. By combin-
ing datasets from multiple prior works as well as introducing new

datasets, we ensure that methods are benchmarked on performance
over a wide range of video query scenarios.

We sample three one-hour sets of 60 one-minute clips from
each dataset: a training set (for training models), a validation set
(for parameter tuning), and a hidden test set (for experimental
evaluation). Thus, we allow each method to select Pareto-optimal
configurations on the validation set, but report accuracy computed
over a test set that the methods do not observe until execution.

In Sections 4.1 and 4.2, we formulate a variety of queries about
cars appearing in the video datasets. We opt to focus on cars be-
cause, while other objects appear in all 7 datasets, object detectors
(specifically, YOLOv3 [20] and Mask R-CNN [7]) trained on COCO
are not able to accurately detect these other objects, and other ob-
jects are highly ambiguous (e.g., it is unclear whether a pedestrian
far in the background near the horizon that occupies only a few
pixels should count).
Baselines.We compare OTIF to six baselines. Miris [1] applies vari-
able framerate tracking under different error tolerances. BlazeIt [10]
applies classification and regression proxymodels to optimize query
speed. TASTI [12] employs proxy models trained to produce per-
frame feature embeddings to build a query-agnostic video index.
NoScope [11], Chameleon [9], and CaTDet [17] propose methods to
accelerate the extraction of object detections and object tracks from
video. CenterTrack is a recent computer vision method for multi-
object tracking published in ECCV 2020 that performs well on the
MOT17 pedestrian tracking benchmark; we obtain a speed-accuracy
tradeoff by tuning resolution and framerate.

We use our implementations ofMiris, BlazeIt, NoScope, Chameleon,
and CaTDet. Although implementations of Miris, BlazeIt, and No-
Scope are available, they are not readily adaptable to our dataset;
we validate the performance of our implementations in Section 4.6.
Chameleon and CaTDet do not have public implementations. We
use the TASTI and CenterTrack implementations released by the
respective authors.
Implementation.We store the training, validation, and test video
on a local SSD at a fixed resolution, which is 720 × 480 for Caldot1
and Caldot2 and 1280 × 720 for the other 5 datasets, encoded in
mp4 container with H264. The native video framerate ranges from
5 fps for UAV to 30 fps for Amsterdam and Jackson. We run all
methods on a machine with one NVIDIA Tesla V100 GPU and one
Intel Xeon Gold 6142 CPU.

The execution pipeline for all methods involves decoding the
video using ffmpeg, and processing decoded frames iteratively in a
way that is specific to eachmethod. Frames are decoded at the object
detector resolution, so reducing the model input resolution may
provide a speedup both through faster model execution and through
faster video decoding. After the last frame is decoded and processed,
each method outputs a set of extracted object tracks. The parameter
selection phase for all methods involves repeatedly applying the
execution pipeline with different parameter configurations.

4.1 Object Track Queries
We now evaluate OTIF against Miris and the three object detec-
tion and tracking baselines on 7 object track queries, where we
formulate one query over each of the 7 video datasets. We do not
compare against BlazeIt and TASTI here, since they are only directly



Table 2: Runtime in seconds of each method on the test set of each dataset, using the fastest candidate configuration that
provides accuracy within 5% of the best achieved accuracy. Runtime for five queries is estimated by scaling the runtime of
query-specific phases in each method.

# Queries 1 Query 5 Queries (estimated)
Dataset OTIF Miris Cham NoScope CaTDet CTrack OTIF Miris Cham NoScope CaTDet CTrack
Caldot1 40 533 209 990 601 1420 40 2665 209 990 601 1420
Caldot2 38 129 123 803 462 1593 38 645 123 803 462 1593
Tokyo 37 123 84 823 810 751 37 615 84 823 810 751
UAV 99 188 188 323 188 - 99 940 188 323 188 -
Warsaw 49 422 422 867 961 900 49 2110 422 867 961 900
Amsterdam 25 64 44 666 564 293 25 320 44 666 564 293
Jackson 44 82 41 618 643 672 44 410 41 618 643 672
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(e) Warsaw (path query) (f) Amsterdam (count query) (g) Jackson (count query)

Figure 5: Runtime-accuracy curves on each query over the test set of the corresponding datasets. Each point is a parameter
configuration for the method, which is chosen based on performance in the validation set.

applicable to frame-level queries. We formulate a variety of queries,
including track count queries and path breakdown queries. Below,
we first detail the queries and metrics, and then present results.

Query Types.On the Amsterdam and Jackson datasets, we employ
track count queries that report the number of unique cars appearing
in each one-minute clip. On the Caldot1, Caldot2, Tokyo, UAV, and
Warsaw datasets, we employ path breakdown queries that break-
down tracks based on the spatial path each track exhibits. The
output of the query consists of counts of tracks exhibiting each
path type. For example, in the Tokyo video of a traffic junction,
we identify 10 unique turning directions that cars take through
the junction, and count the number of objects passing through the
junction along each direction.

Metrics.We measure accuracy by comparing the counts inferred
by a method from the video with hand-labeled ground truth counts,
using percent accuracy averaged over clips and, if applicable, path
types. If a method infers a count 𝑥 , and the ground truth count is
𝑥∗, then we define accuracy as 1 − |𝑥 − 𝑥∗ |/𝑥∗.

We also evaluate methods on their runtime. We exclude training
costs of each method from the runtime, focusing only on costs that
grow linearly with the dataset size.

All methods that we compare on object track queries expose
parameters that can be tuned to provide a tradeoff between speed
and accuracy. Thus, we compare methods on their speed-accuracy
curve. We first apply the parameter selection phase of each method
on the validation set, which yields a speed-accuracy curve consist-
ing of several Pareto-optimal configurations. We then apply each
of these parameter configurations on the unseen test set, yielding
a test speed-accuracy curve: the runtime of a configuration is its
execution time over the unseen one-hour test set, and its accuracy
is the percentage accuracy of its output counts in each one-minute
clip, averaged across 60 clips.
Results. Table 2 and Figure 5 show the results. In Figure 5, we plot
speed-accuracy curves provided by the five methods on each of the
7 queries. In some cases, several methods share the same top-right
slowest, highest-accuracy point: this is because Miris, Chameleon,
NoScope, and CaTDet fallback to the same naive configuration



that processes every video frame. In Table 5, for each dataset and
method, we show the runtime of the fastest configuration (among
candidates selected using the validation set) providing accuracy
within 5% of the best achieved accuracy on the test set (across all
methods). We choose the 5% threshold since average accuracy is
computed over 60 accuracy samples (the test set consists of 60 clips
randomly sampled from the video dataset), and so the variance in
the sample mean implies that differences in accuracy less than 5%
may not be meaningful. Thus, Table 2 highlights the runtime that
each method can achieve while maintaining an accuracy close to
the best accuracy achieved by any method.

Although Miris is specifically designed to optimize the execution
of object track queries, and leverages knowledge of the query to
plan an execution configuration, OTIF provides a 5x speedup on
average over Miris at the same accuracy level. By jointly tuning its
segmentation proxy model, object detector, and recurrent reduced
rate tracker, OTIF is able to extract tracks from video substantially
faster than Miris can execute just one query. Since Miris utilizes
a per-query execution stage, the speedup balloons to 25x when
executing 5 queries over the same video.

OTIF also consistently performs comparably to or better than
the next best object detection and tracking baseline across all seven
datasets: it provides an average 3.4x speedup over the next best base-
line in Table 2. Although Chameleon offers good speed-accuracy
tradeoffs on every dataset, OTIF provides better performance (espe-
cially on Tokyo, UAV, Warsaw, Caldot1, and Caldot2), both through
the novel techniques employed in its segmentation proxy model
and recurrent tracker components, and simply by exploring a more
diverse range of ways to improve execution speed without impair-
ing accuracy. NoScope provides some degree of a tradeoff between
speed and accuracy on Amsterdam, Caldot1, and Caldot2; however,
it only yields two candidate configurations for the other datasets
because those datasets have objects visible in every frame (one
candidate applies the detector on every frame, while the other skips
the entire video and simply outputs 0 for all counts). CaTDet offers
a slightly better tradeoff than NoScope on most datasets, but simi-
larly exhibits poor performance as it does not optimize framerate
or resolution. CenterTrack performs poorly on all datasets except
Amsterdam: CenterTrack is designed for high-accuracy but slow
multi-object tracking in native-framerate and native-resolution
video, so although the method yields state-of-the-art performance
on MOT17, it may not be competitive on the speed-accuracy trade-
off; additionally, it may require extensive hyperparameter tuning
to improve results on our video datasets. Across all accuracy levels,
OTIF is better than all other methods on 5 out of 7 datasets; on
Amsterdam and Jackson, it provides a comparable speed-accuracy
curve to Chameleon.

4.2 Frame-Level Queries
In this section, we evaluate OTIF against BlazeIt and TASTI on
6 frame-level limit queries. We formulate three types of queries:
object count queries, region queries, and hot spot queries. BlazeIt
and TASTI both incorporate techniques specifically designed to
optimize the execution of frame-level limit queries: in particular,
after building a query-specific (BlazeIt) or query-agnostic (TASTI)
index, they use the index to derive scores on how likely each frame

is to satisfy the query, and then process video starting from the
highest-scoring frames until the desired number of frames specified
in the limit query are found. Below, we first detail the queries and
evaluation metrics, and then present results.

Query Types.We formulate 6 frame-level limit queries to bench-
mark the methods, split into three types:

• On the UAV and Tokyo datasets, we apply count queries that
select frames with at least 𝑁 objects.

• On the Jackson and Caldot1 datasets, we apply region queries
that select frames with at least 𝑁 objects in a fixed spatial
region (polygon) of the frame.

• On the Warsaw and Amsterdam datasets, we apply hot spot
queries that select frames where there are at least 𝑁 objects
in a circular cluster of radius 𝑅.

Methods must output both the matching frames (i.e., clip filename
and timestamp) and the object positions in the frame, region, or hot
spot. We require query outputs, which are video frames, to be at
least 5 seconds apart. We set the limit (desired output cardinality) of
each query to 25 or 50 depending on the total number of matching
frames, and set the query parameters (e.g., 𝑁 ) so that there are
fewer than 250 matching five-second video segments.

Execution Details. To apply BlazeIt and TASTI on frame-level
limit queries, we train a proxymodel to either produce object counts
(BlazeIt) or feature embeddings (TASTI) on every frame. Both meth-
ods then score frames based on the likelihood that they satisfy
the predicate. BlazeIt uses the per-frame counts directly as scores,
while TASTI trains an auxiliary model to compute query-specific
scores from general-purpose embeddings. BlazeIt and TASTI then
optimize query execution by applying the detector (using an input
resolution that provides the best accuracy, in our implementation)
on frames in order from highest-scoring to lowest-scoring until they
encounter a sufficient number of frames that match the predicate
to satisfy the desired output cardinality.

Note that BlazeIt and TASTI do not expose parameters to pro-
vide a tradeoff between speed and accuracy, and instead optimize
speed under the assumption that the object detector is always fully
accurate (which is not the case in practice). Thus, they produce one
speed and accuracy point rather than a curve. When applying OTIF,
we choose one parameter configuration to execute on the test set
so that we also yield one speed-accuracy point. In particular, we
execute OTIF to extract all tracks from the dataset using the fastest
parameter configuration among the candidates that yield within 5%
of the best-achieved accuracy on object track queries (i.e., the same
configurations as the ones from Table 2). We then post-process the
tracks to pick frames that match the query, starting with frames
where the visible tracks have the highest minimum duration.

Metrics. As with object track queries, we evaluate the methods on
speed and accuracy. We define accuracy as the fraction of frames
produced by a method that satisfy the query based on hand-labeled
ground truth. Note that, while BlazeIt and TASTI are designed to
produce outputs with 100% accuracy with respect to a given object
detection model, in practice no model is fully accurate, and so their
actual accuracy may be much lower.

As before, we ignore training costs in both methods, and focus
only on execution runtime that grows linearly with the dataset size.



Table 3: Evaluation of OTIF, BlazeIt, and TASTI on the six frame-level queries. We show metrics averaged across the queries.
Runtime for five queries is estimated by scaling the runtime of query-specific phases in each method.

# Queries 1 Query 5 Queries (estimated)
Method OTIF BlazeIt TASTI OTIF BlazeIt TASTI
Average Pre-processing Time (sec) 100 98 814 100 490 814
Average Query Time (sec) 1 35 23 1 175 115
Average Total Time (sec) 101 133 837 101 665 929
Average Accuracy 97% 86% 84% 97% 86% 84%

Results. Table 3 shows the results. OTIF’s pre-processing time is
comparable to BlazeIt’s, implying that OTIF is able to extract all
tracks from video in the same time that it takes BlazeIt to apply a
query-specific proxy model. There are two reasons for this. First,
although BlazeIt processes video at a lower resolution (64×64), OTIF
combines its segmentation proxy model with its resolution and
framerate optimizations to achieve a similar speedup. Second, since
both methods substantially reduce the cost of machine learning
inference, video decoding begins to become a bottleneck, occupying
roughly one-third of CPU time.

Then, since the outputs from OTIF’s pre-processing stage (i.e.,
object tracks) can be efficiently post-processed to execute multiple
queries, OTIF provides a 6x speedup over BlazeIt when executing 5
queries over the same video data.

TASTI’s pre-processing stage is much slower since it processes
every frame of video at a resolution of 224×224. Then, even though
TASTI’s query-agnostic feature embeddings can be reused across
queries (unlike BlazeIt), its overall runtime on 5 queries is worse
than that of BlazeIt.

Note that BlazeIt’s query time consists of applying the object
detector 1,523 times on average, while TASTI’s query time consists
of applying the detector 1,890 times on average. We exclude video
decoding time in the query time numbers (35 s for BlazeIt and 23
s for TASTI on one query) since we have not optimized the query
pipeline for random-access decoding; thus, query time for BlazeIt
and TASTI only includes the object detector inference runtime.

OTIF also provides higher average accuracy than BlazeIt and
TASTI: several frames produced by the latter methods contain spu-
rious detections where the object detector exhibited errors; OTIF’s
tracking procedure is able to avoid most of these errors by prun-
ing length-1 tracks. Nevertheless, the main conclusion from this
experiment is that, remarkably, OTIF is able to accurately extract
all tracks from video in the same time that prior work requires for
answering a single limit query, even when the desired output cardi-
nality is small. After tracks are extracted, exploratory queries can
be executed in milliseconds with OTIF instead of tens of seconds
with BlazeIt and TASTI.

4.3 Cost Breakdown
In Figure 6, we show a breakdown of OTIF’s pre-processing and
execution costs on Caldot1. We categorize costs as execution if they
scale linearly with the dataset size, and as pre-processing otherwise.
Pre-processing is dominated by object detector training, which is
required to get high-accuracy on this dataset. Note that the segmen-
tation proxy model time includes 3 seconds for computing the fixed
window sizes. The execution cost breakdown corresponds to the
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Figure 6: Cost breakdown of OTIF for the Caldot1 dataset.

Method Caldot1 Warsaw
Detector Only 299 951
+ Sampling Rate 208 432
+ Recurrent Tracker 42 71
+ Segmentation Proxy Model 40 49

Table 4: Ablation study of OTIF on Caldot1 and Warsaw,
showing runtime (sec) using the fastest configuration pro-
viding accuracy within 5% of best achieved accuracy. Rows
show increasingly complete implementations of OTIF.

fastest OTIF configuration providing accuracy within 5% of the best
achieved accuracy. Because several components run in parallel, and
on different hardware (CPU vs GPU), the breakdown does not sum
to the overall 40-second runtime. As with pre-processing, object
detection dominates the execution cost.

4.4 Ablation Study
In Table 4, we conduct an ablation study of OTIF on the Caldot1 and
Warsaw object track queries, testing four successively more com-
plete implementations of OTIF: in Detector Only, we start with our
parameter tuning method with only the object detection module;
in “+ Sampling Rate”, we add a tracking module using the heuristic
SORT [2] tracker; in “+ Recurring Tracker”, we replace SORT with
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Figure 7: On the left, object detection speed and accuracy
on Caldot1 of YOLOv3 versus integrating our segmenta-
tion proxy model, with different numbers of detector win-
dow sizes. On the right, precision-recall curves of the proxy
model at different input resolutions.

our recurrent reduced-rate tracking method; and in “+ Segmenta-
tion Proxy Model”, we add the segmentation proxy model, which
corresponds to our full method. Each additional module improves
performance in different conditions: for example, while the seg-
mentation proxy model provides little improvement on Caldot1, it
provides a 1.5x speedup on Warsaw.

4.5 Segmentation Proxy Model
Here, we directly evaluate the performance gain provided by the
segmentation proxy model by comparing the speed-accuracy curve
obtained when using YOLOv3 alone at varying resolutions, against
using it in conjunction with our proxy model approach. We apply
both methods on one hour of video in Caldot1, and evaluate accu-
racy in terms of a standard object detection metric, mean average
precision (mAP@50%), on 50 hand-labeled frames. With YOLOv3,
we obtain a speed-accuracy curve simply by varying resolution.
When adding our method, since values for several parameters must
be set, we use the greedy tuning process in Section 3.5.

We show results in Figure 7 (left). We include ablations of the
proxy model with different numbers of window sizes 𝑘 ; 𝑘 = 3 corre-
sponds to the default setting we use for OTIF in other experiments,
while 𝑘 = 1 would be equivalent to using the detector only. Perfor-
mance increases with more window sizes, but increasing 𝑘 beyond
3 provides diminishing returns that are not worth the increased
GPU memory capacity requirements. At 𝑘 = 3, our segmentation
model approach provides a substantial gain in speed at all accuracy
levels over using only YOLOv3.

In Figure 7 (right), we show precision-recall curves comparing
the per-cell scores produced by the proxy model against cells that
intersect ground truth boxes in the 50 hand-labeled frames. We
obtain a curve by varying the score threshold 𝐵proxy. Performance
decreases as we reduce the input resolution, but the model remains
highly effective even when inputting 160 × 96 frames. Note that
overall performance depends not only on precision and recall, but
also how tightly we can create rectangles around the positive cells
for detector execution.

Original Implementation Our Implementation

Figure 8: The original BlazeIt implementation detects cars in
the authors’ Taipei video with unreasonably poor accuracy.
On the left, we showdetections taken directly fromfiles pub-
lished by the authors. Our implementation improves over
the original in accuracy and delivers similar speed.

4.6 Implementation Performance Comparison
As discussed above, we re-implement Miris, BlazeIt, and NoScope
since the respective authors’ implementations are not readily adapt-
able to our environment. Here, we validate the performance of our
implementations by comparing our BlazeIt implementation with
the authors’ implementation on their Taipei dataset.

On runtime, when excluding video decoding time, our BlazeIt
implementation takes 85 seconds to process the 33-hour Taipei
video dataset through the proxy model, which is comparable to the
100-second runtime reported by the authors. The authors do not
report the overall runtime (i.e., including video decoding).

On accuracy, we find that our implementation, which applies
YOLOv3 or Mask R-CNN (whichever yields higher accuracy), cap-
tures cars in Taipei far more accurately than the original implemen-
tation. For example, in Figure 8, the authors’ code only identifies 3
of 6 visible cars, while ours successfully detects all 6 cars with one
false positive. Due to the substantially lower detector accuracy in
the original implementation, we cannot compare the accuracy of
the proxy model in a way consistent with the reported results.

5 CONCLUSION
In this paper, we have presented OTIF, a video pre-processor for
exploratory video analytics queries. Compared to prior work, OTIF
is faster, offering a 6x to 25x average speedup across 7 datasets over
video query optimizers at the same accuracy level; is more general,
enabling execution of any query that involves object detections and
tracks; and substantially reduces query latency after pre-processing,
since queries can be answered by processing extracted tracks with-
out additional video decoding and ML inference. More broadly, our
results suggest that current video query optimizers face significant
challenges in competing with fast object trackers, and that further
improving the speed-accuracy tradeoff of object tracking and other
computer vision tasks is likely a more promising future direction.
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