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ABSTRACT

Current approaches to construct road network maps from GPS
trajectories suffer from low precision, especially in dense urban
areas and in regions with complex topologies such as overpasses
and underpasses, parallel roads, and stacked roads. This paper pro-
poses a two-stage method to improve precision without sacrificing
recall (coverage). The first stage, RoadRunner, is a method that
can generate high-precision maps even in challenging scenarios by
incrementally following the flow of trajectories, using the connec-
tivity between observations in each trajectory to decide whether
overlapping trajectories are traversing the same road or distinct
parallel roads, and to correctly infer road segment connectivity.
By itself, RoadRunner is not designed to achieve high recall, but
we show how to combine it with a wide range of prior schemes,
some that use GPS trajectories and some that use aerial imagery, to
achieve recall similar to prior schemes but at substantially higher
precision. We evaluated RoadRunner in four U.S. cities using 60,000
GPS trajectories, and found that precision improves by 5.2 points
(a 33.6% error rate reduction) and 24.3 points (a 60.7% error rate
reduction) over two existing schemes, with a slight increase in
recall.
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1 INTRODUCTION

The availability of accurate and up-to-date road maps is critical
for many applications, including GPS-based navigation services,
disaster relief efforts, and autonomous transportation. However,
creating and maintaining road network maps is currently human-
intensive, expensive, and slow. Thus, automating parts or all of
the map creation and maintenance process holds the potential to
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benefit many applications by providing maps that quickly reflect
road network changes. Crowdsourced GPS trajectories are a useful
data source for this task. These trajectories are sequences of GPS
observations collected as vehicles travel along the road network,
and are available at scale nowadays from smartphones.

Inferring road network maps from GPS data has received con-
siderable attention in recent years [2, 6, 12, 15]. Broadly, existing
inference schemes infer a high-coverage but low-accuracy initial
graph, and then apply refinement heuristics (e.g., graph spanners
pruning [19] and k-means refinement [7]) to improve precision.
However, we find that these methods fail to produce high quality
maps, especially in dense urban areas and in areas with complex
intersections; these areas often have large volumes of traffic and
play an important role in a city’s road network. In the two left
panels of Figure 1, we show the results from two such approaches
on selected regions of three cities.

The resulting maps suffer from three significant problems:

e They connect overpasses with underpasses in a planar graph,
despite the underlying techniques using heuristics to avoid
these spurious connections.

e They connect adjacent roads that do not intersect.

e They fail to capture detailed topology such as highway in-
terchanges.

Because prior schemes developed over a period of several years
suffer from these problems, we believe that strategies that start
with a low-accuracy initial graph and then refine it will not be able
to regain high precision.

Thus, in this paper, we turn the strategy on its head. We pro-
pose a two-stage architecture that focuses on precision first, and
recall second. In the first stage, we infer a high-accuracy road net-
work to accurately capture road topology in complex regions like
overpasses/underpasses, stacked roads, parallel roads, multi-road
intersections, and dense urban areas. Then, in the second stage,
rather than developing new refinement heuristics, our approach
regains recall by simply running any of several prior schemes, but
taking care not to disrupt the segments and interconnections com-
puted in the first stage. The result is much higher precision with
recall similar to the second-stage scheme.

However, accurately inferring road topology in complex regions
is difficult even when high recall is not a concern. For example, in
Figure 2, if we look only at a point cloud of GPS observations across
the trajectories (where we discard the connectivity between obser-
vations defined by the trajectories), we cannot discern whether the
two roads meet. Thus, the common technique of taking a histogram
over observations (kernel density estimation [11]), in which each
cell is weighted by the number of GPS samples contained in the
cell, does not reveal the underlying network topology. On the other
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Figure 1: Motivation. GPS-trajectory based mapmaking algorithms running on complex interchanges in major cities. Red lines show algorithm
output overlaid on underlying ground truth map in gray. Two existing algorithms are on left, our proposed RoadRunner algorithm is on right.
Both existing approaches connect parallel segments on highways, often with many small, spurious crossing segments, and also add incorrect

intersections where roads of different heights cross.

hand, the topology becomes clear if we bring back the trajectory
connectivity: because no trajectory that starts from the left road
exits along the right road and vice versa, we can conclude that the
two roads do not intersect.

We present RoadRunner, a method that exploits trajectory con-
nectivity to generate accurate maps in challenging regions where
existing methods fail. RoadRunner constructs a road network graph
incrementally by following the flow of GPS trajectories. This iter-
ative process enables RoadRunner to consider GPS observations
on each iteration not in isolation, but in the context of several pre-
decessor and successor observations in the same trajectory. This
context, which we use in a trajectory filtering algorithm, is crucial
to precisely separating out nearby but distinct roads, and doing so
in a way that is robust to GPS noise and complex road topologies.
The right panel of Figure 1 exemplifies how RoadRunner produces
maps with significantly higher precision than prior work.

Although our incremental procedure and filtering strategy allow
RoadRunner to infer roads with high precision, they also cause
RoadRunner to miss roads that are covered by few GPS trajectories,
such as roads in residential areas. Fortunately, existing methods
already perform well in such regions. Thus, after running RoadRun-
ner to produce a high-precision map covering the most challenging
areas of the road network, we run an existing high-recall method in

the second stage. Then, we apply a merging procedure to identify
segments found by the high-recall method but not by RoadRunner,
and integrate them into the inferred map.

In summary, we make the following contributions:

e We propose a two-stage map inference architecture that en-
ables us to generate high precision road network graphs
without sacrificing the coverage. At the core of this architec-
ture is RoadRunner, our high-precision first-stage method
that uses the connectivity of GPS trajectories to produce
accurate maps in dense urban areas and at complex intersec-
tions where current approaches perform poorly.

e We show how to integrate several prior schemes as the sec-
ond stage in our two-stage architecture with a merging proce-
dure to combine the road segments inferred by RoadRunner
with those inferred by existing approaches. We apply the
merging procedure to two current state-of-the-art GPS-based
approaches, Biagioni-Eriksson (BE) [6] and Kharita [19], and
to RoadTracer [5], which processes aerial imagery.

e We evaluate our two-stage architecture over 4 km X 4 km re-
gions of four U.S. cities containing 1,864 kilometers of roads
on a GPS trajectory dataset of over 60,000 trajectories. We
find that our proposed two-stage architecture significantly
improves the quality of the inferred maps compared with the
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state-of-art solutions. We summarize the evaluation result

in table 1.
Schemes Precision | Recall | Routing Error
BE 84.5% 37.2% 76.1 meters
RoadRunner+BE 89.7% 42.8% 24.8 meters
Kharita 60.0% 43.0% 73.7 meters
RoadRunner+Kharita 84.3% 44.7% 41.4 meters

Table 1: Summary of the evaluation results

Figure 2: Illustration of the importance of accounting for the asso-
ciation between observations in a trajectory. Two roads that pass
near each other but do not meet are shown on the left. In the cen-
ter, we show a set of trajectories that pass these roads, along with
an example histogram over GPS observations in those trajectories.
We cannot tell whether the roads intersect from the histogram, al-
though it is clear from the original trajectories. Existing approaches
often produce a road network graph similar to the one on the right.

2 RELATED WORK

The rapid adoption of GPS-enabled smartphones has led to consid-
erable interest in the problem of automatic road network inference
from GPS trajectories [2, 7, 15]. However, as we demonstrated in
Figure 1, prior schemes yield noisy maps with low precision on
complex topologies such as highway interchanges. We show that
precision can be improved by exploiting the connectivity between
GPS observations at different times along the same trajectory.

Broadly, road network inference schemes can be divided into
three categories [7]. k-means approaches begin by clustering the
GPS observations. Cluster centers become vertices in the inferred
road network graph, and edges are added between the clusters of
successive observations in each trajectory [1, 13, 17]. During cluster-
ing, the longitude, latitude, heading, and speed of each observation
may be considered, but the connectivity between observations in
the same trajectory is ignored. Although this connectivity is used
to add edges, this stage still only considers pairs of consecutive
observations rather than longer trajectory subsequences.

Kernel density estimation (KDE) approaches first generate a spa-
tial histogram where each cell is weighted by the number of GPS
trajectories that pass through the cell. Kernel smoothing is applied
on the histogram (typically using a Gaussian distribution), followed
by morphological thinning or similar skeletonization techniques to
extract centerlines and produce a graph [9, 11, 18]. These techniques
do not consider the connectivity between GPS observations.

Trajectory merging approaches merge GPS trajectories one at
a time into an initially empty road network graph [3, 8]. Again,

while these approaches iterate over a trajectory to merge it into the
graph, the merging process operates only on pairs of successive
observations at a time.

Recently, a number of methods have been proposed that com-
bine or extend these techniques. Biagioni et al. [6] propose a hybrid
pipeline using KDE with an adaptive thresholding scheme to obtain
an initial road network graph, followed by geometry and topology
refinement and map-matching-based pruning to further improve
accuracy. Chen et al. [10] propose a supervised learning frame-
work that leverages prior knowledge on real-world road networks
to learn the shape of different junctions, and integrate this with
a cluster based algorithm. Stanojevic et al. [19] develop a novel
model in which map construction is framed as a network align-
ment problem. The derived optimization problem is then mapped
into a hybrid algorithm combining k-means clustering and graph
spanners. Zheng and Zhu [21] propose a revisited version of the
trace merging method, applying a novel clustering algorithm that
uses a partial curve matching method based on Fréchet distance to
measure the partial similarity between any trajectory and a previ-
ously created link. While these methods improve on earlier schemes,
none utilize the long-term connectivity between observations in
the same trajectory when constructing the road network graph.

Other data sources, aerial imagery in particular, have also been
leveraged for automatic road network inference. DeepRoadMap-
per [16] applies CNN-based segmentation followed by an extensive
post-processing pipeline to extract a road network graph from aerial
imagery. RoadTracer [5] improves on DeepRoadMapper [16]. It uses
an iterative graph construction strategy to obtain a graph directly
from a CNN, thereby attaining higher precision that segmentation-
based approaches. However, because of occlusion by tall build-
ings, shadows, and overpasses, accurately inferring roads from
aerial imagery in dense urban areas and complex intersections is
challenging—indeed, these methods assume a fully planar road
network graph, and thus yield low precision in these regions.

3 ROADRUNNER

RoadRunner iteratively constructs the road network from an initial
graph by following the flow of GPS trajectories. We show the struc-
ture of RoadRunner in Algorithm 1. The algorithm begins with an
initial graph; this may be obtained from an existing graph or a graph
inferred by another approach. We first push all the vertices in this
initial graph into a queue Q. We call the vertices in the queue active
vertices. On each iteration, RoadRunner picks an active vertex from
the queue and extends the current graph from this active vertex
by performing two key operations — adding new road segments
(tracing), or connecting the active vertex with an existing vertex
when two physical roads join together (merging).

We show an example of how RoadRunner works in Figure 3.
The algorithm starts with an initial graph G which has only one
single vertex (the green vertex near the upper-right corner). We
visualize the partially constructed graph and the active vertices
at different iterations. The construction procedure uses the GPS
data to gradually extend the graph by following the road network,
including forking at intersections and merging when two roads
come together. The algorithm stops tracing a road when it reaches
a dead end, leaves the region of interest, or joins with other roads.
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Figure 3: We visualize the partially constructed graph G (red) and the active vertices queue Q (blue) from different iterations in the construction
procedure. In this example, the algorithm begins with a single vertex (green) at the upper-right corner of the region.

Algorithm 1 RoadRunner. The asymptotic complexity of this al-
gorithm is O(L - D), where L is the total length of the road network
and D is the average number of GPS points explored at each step
(e.g., within 100 meters)

1: procedure ROADRUNNER(InitialGraph)

2 G « InitialGraph

3 Q <« Push all vertices of G into a queue

4 while Q is not empty do

5 v — Q.pop()

6 D « Trace(G, v) > Return the direction(s) of the
GPS flow(s) around vertex v.

7 for each direction 6 in D do

8 loc < v.loc +d - (cos@, sinf)

9 u < G.initVertexAtLocation(loc)

10: u.predecessor «— v

1t G.addEdge(v,u)

12: succ «— Merge(G, u) > Try to merge the vertex
u with the current graph G, return the state of merging.

13: if succ is False then

14: Q.push(u)

15: return G as the inferred road network graph

Finally, after the search queue is empty, we obtain the road network
graph for the whole region.

Constructing the road network graph in an iterative manner
enables RoadRunner to exploit the long-term connectivity between
GPS observations to accurately capture road geometry and topol-
ogy as it adds each segment to the graph. By contrast, most prior
approaches rely on a histogram over observations [11], the position
of individual or pairs of GPS observations [8], or the local head-
ing of observations [10, 12, 19] to construct the road graph. Some
prior approaches use long-term trajectory information after an ini-
tial road network graph has been produced. For example, BE [6]
leverages the trajectory sequences in a post-processing phase to
prune edges from an initial low-accuracy graph. However, refining
a low-accuracy graph is very difficult, particularly, in regions with
complex road topology or high GPS noise.

To robustly trace and merge roads, at each iteration, RoadRunner
compares trajectory sequences with the partially constructed graph

Figure 4: We show the GPS trajectories (grey) near a complex high-
way junction as well as the corresponding aerial image of the same
region. The red vertices represent the partially constructed graph
and the blue vertex is the active vertex from where we are going to
extend the graph. We highlight the trajectories that pass near the
partially constructed graph in green. In the aerial image, we high-
light three roads that are challenging for map inference algorithm.

to filter trajectories that are not related to the road of interest.
Consider Figure 4, where we are extending the graph from the
blue vertex corresponding to a highway ramp. Since the three
highlighted roads are close to each other and have almost the same
heading, if we take GPS observations from all of the trajectories into
account, we may connect the underpass and overpass of the green
road and the red road, or merge the red road with the blue road.
However, by excluding trajectories that do not pass near a sequence
of edges in the partially constructed graph corresponding to the
current road, we obtain a much cleaner subset of GPS trajectories
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that covers only the red road. Our iterative architecture enables us
to construct such a subset of trajectories on each step, and to use it
to accurately capture the road network.

To realize this idea, we introduce a primitive called a way path
filter. Given a sequence of circles centered at locations along a road,
the way path filter prunes the GPS trajectory data to retain only
trajectories that pass through the circles in order. Thus, the circles
act as waypoints that we require the trajectories to traverse.

Formally, given the trajectories T and a sequence of circles P =
((p1,71), (Pp2,72)s - . ., (Pn, Tn)), where the ith circle is centered at p;
and has radius r;, the way path filter is a function filter(T, P) that
computes a subset of T containing trajectories that pass through
the circles in P sequentially. A trajectory ¢t € T is in this subset if
there exists a subsequence of GPS observations in the trajectory,
(tj,»...,tj,) such that the distance from t;; to p; is at most r; for
all i.

For a particular active vertex, we apply the way path filter to
retain only trajectories that are likely to have traversed the road
corresponding to the active vertex. To do so, we compute a path in
G of length k that terminates at the active vertex, and then apply
the filter with circles drawn around vertices along this path. The
radius of these circles should correspond to the width of the road
at the vertex, so that the circle covers all trajectories that traverse
the road. We estimate this width from the trajectory data (Section
3.3.1).

The length of the path, k, impacts the precision of the inferred
map. A larger k applies a filter through a longer path, enabling
more accurate tracing and merging operations. In practice, we set k
to be 75 meters, as we find this is long enough for us to distinguish
the most challenging road structures. In fact, in our experiments,
we find that increasing k yields higher precision but slightly lower
recall. After k exceeds 75 meters, precision no longer improves.

Next, we discuss RoadRunner’s tracing operation (Section 3.1),
merging operation (Section 3.2), and some implementation details
(Section 3.3).

3.1 Tracing

The tracing operation extends the road network graph by adding
new vertices and edges to an active vertex in the direction of the
GPS trajectories that pass through that vertex. RoadRunner simul-
taneously follows all peak directions indicated by the trajectories.
It predicts these directions using Algorithm 2.

Consider the example in Figure 5, where we are predicting the
peak directions of GPS trajectories near the active vertex v (blue).
Let P = {(po,r0), (P1,71)5 --- » (Pk—1, T—1)) be a sequence of circles
centered at vertex v and its k — 1 predecessors in the partially con-
structed graph (line 2-3). In the figure, we highlight the trajectories
in filter(T,P). We can clearly see that the trajectories split into
three groups at the intersection.

To predict the directions of these outgoing groups of trajectories,
we check 72 evenly spaced angles from 0 to 27z. For each direction 9,
we create a circle w = (v + D(cos#, sinf), r) located at a distance D
from v in the direction 6. We count the number of GPS trajectories
that pass near the path P+ (w) using the way path filter (line 7). We
subtract the counted number by M. The parameter M helps control
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Figure 5: We show an example of the tracing operation near a four-
way intersection. In the above figure, the red vertices are the par-
tially constructed graph and the blue vertex is the active vertex.
‘We highlight the GPS trajectories that pass near this partially con-
structed graph in green. The green GPS flow splits into three groups
at the intersection. We predict the directions of these outgoing GPS
flows through a score function. Here, we can clearly see three local
peaks in the score function over different angles.

Algorithm 2 Trace Operation

1: procedure TRACE(Graph G, Vertex v)

2 u = (u;) « the first k — 1 predecessors of v.

3 P « the circle sequence of path u + (v)

4 N, Score « arrays indexed by different angles.

5 for each 6 in evenly spaced angles from 0 to 27 do
6 w « circle (v.loc + D - (cos0, sinf), r)

7 T’ « filter(T,P + (w))

8 N[60] « min(0,|T’| — M)

9 Score « smooth(N)

10: return angles of local peaks of Score[6]

the precision of constructed maps by excluding low confidence (low
density) GPS flows.

We define the score function as the smoothed version of this
counter over different angles. In the smooth function, we convolve
the input array with a Gaussian kernel. Smoothing removes small
changes in the score function and lets us focus only on major peaks.
We extract the directions of all outgoing GPS flows by identifying
local peaks in the smoothed score function. We show an exam-
ple in Figure 5. There are three local peaks in the score function,
corresponding to the left-turning flow, the straight flow, and the
right-turning flow. After we get the directions of the outgoing
flows, we extend the graph G by adding new vertices at a small
fixed distance from v towards each direction.



SIGSPATIAL ’18, November 6-9, 2018, Seattle, WA, USA

3.2 Merging

When the construction procedure encounters a road segment that
has already been explored in the graph G, we need to merge the cur-
rent road with the previous path. However, merging is challenging:
we need to merge roads that connect while ensuring that over-
passes/underpasses, parallel roads, and multilayer roads remain
separated. Correctly capturing connectivity is crucial because even
a small number of incorrect connections lead to a large number of
navigation errors.

Existing approaches [6, 19] aggressively merge road segments,
considering only local information such as distance and heading.
This yields numerous incorrect connections in challenging regions
like dense urban areas and highway intersections. We find that
deciding whether we should merge two road segments with only
local information such as distance and heading is not enough. As
the example shown in Figure 6, a universal merging threshold may
not exist if we only consider the local information.

To overcome this challenge, we introduce a novel merging crite-
ria that can accurately decide whether road segments should merge
or not. When two road segments are close to each other, instead of
only considering the local information of these two road segments
such as distance and heading, we look at the GPS trajectories that
pass through these two road segments. We merge the road segments
only if the distributions of these two groups of GPS trajectories
match in the future (after traveling past the two road segments).

In Figure 6, we show the distributions of filtered GPS trajectories
that pass the blue and green road segments. We can clearly see
that the two distributions of example (a) disagree with each other,
while the two distributions are very similar in example (b). This
design enables us to make correct decisions on whether the two
roads should be merged or not in a very general way, supporting a
wide range of road types. Again, we use the partially constructed

Algorithm 3 Merge Operation

1: procedure MERGE(Graph G, Vertex v)

2 D, « GenDistribution(G, v)

3 for each vertex u near v do

4 D, « GenDistribution(G, u)

5: if Dy, is similar with D,, then

6 G.addEdge(u,v)

7 return True

8 return False

9: procedure GENDISTRIBUTION(Graph G, Vertex v)

10: Py « the path formed by v’s predecessors

11: T, « filter(T,Py)

12: T/ « for each t in Ty, we only keep a portion of it; this
portion starts near v and continues for a fixed distance, e.g.,
300 meters.

13: return the spatial distribution of T},

graph as a trajectory filter to generate the two distributions. The
details of the merging algorithm are shown in Algorithm 3.

3.3 Implementation Details

In this section, we briefly discuss two implementation details: vertex
radius estimation and tracing acute branches.

Songtao He, Favyen Bastani et al.
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Figure 6: Suppose we are considering to merge the green road and
the blue road in the above two examples. Simply considering the
distance between the two roads cannot yield valid results. In fact,
the distance between the two roads in example (b) is larger than the
distance in example (a). However, we need to merge the two roads
in example (b) rather than the two roads in example (a). Below the
satellite images, we show the distribution of GPS trajectories after
they pass through the blue road segments (distribution 1) and the
green road segments (distribution 2).

3.3.1 Vertex Radius Estimation. Each vertex in the road network
graph has a radius attribute. Recall that in the way path filter, we
filter GPS trajectories based on this radius attribute. Instead of using
a fixed radius for all vertices, we estimate this radius for each vertex
during the graph construction process. The basic idea is to estimate
the width of the road at vertex v from the GPS trajectories and use
that as the radius.

Specifically, we consider the vertex sequence from v’s 2kth pre-
decessor to its kth predecessor. Then, we apply the way path fil-
ter on this vertex sequence. We look at the distribution of the fil-
tered trajectories along the perpendicular direction of the edge
v.predecessor — v. Here, we assume this distribution follows
Gaussian mixture model, where the component closest to the cen-
ter line corresponds to the road through v.predecessor — v, while
other components capture nearby roads that may have just forked
from the main road. We estimate the number of the mixture com-
ponents as well as the mean and standard deviation of each compo-
nent. Then we use the standard deviation of the component located
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closest to the center line as the radius of vertex v. Note that this
estimation algorithm depends on the radius of v’s predecessors.
Thus, we set the radius of all vertices in the initial graph to a fixed
initial value, e.g., 5 meters.

This dynamic radius estimation solution allows the way path
filter to remain effective on roads of diverse widths and GPS noise
levels.

3.3.2  Tracing Acute Branches . The tracing algorithm in Section
(3.1) may fail to trace all branches when the angle between two
branches is very small. This often happens on highway offramps,
where the large traffic volume disparity between the highway and
the offramp, along with the small angle of the branch, make it hard
to identify the GPS flow through the ramp. We solve this problem by
re-using the Gaussian mixture components estimated in the vertex
radius estimation (Section 3.3.1). In the road width estimation, each
mixture component, located along the perpendicular direction of
the current road, represents a nearby road that just forked from
the current road. We check all these nearby roads. If they are not
covered by the road network graph, we add them to the graph and
push their last vertices into the active vertices queue.

4 TWO-STAGE MAP INFERENCE

As shown in Figure 1, RoadRunner can capture complex portions
of the road network with high accuracy. However, we find that
RoadRunner may miss roads in regions that are covered by very
few GPS trajectories, such as residential areas. The reason is that
RoadRunner aggressively filters trajectories that don’t conform to
the structure of the currently explored road at each step of the
search; this strategy enables very high precision but misses lightly
covered roads. Fortunately, these are the very regions where current
state-of-the-art inference algorithms excel.

Thus, we develop a merging procedure to get the best of both
worlds. We obtain a highly accurate road network graph covering
noisy and topologically-complex areas from RoadRunner, and then
merge segments inferred by an existing approach that correspond
to new roads.

Let G1 be a road network graph inferred by RoadRunner, and
Gz be one inferred by an existing scheme that captures sparsely
covered roads. We prune edges and portions of edges in Gy that lie
within Ryerge meters of G; to obtain GJ; this eliminates segments
corresponding to roads that RoadRunner has already captured. We
then compute G as the union of G; and G;. However, roads added
from G}, will be disconnected from the rest of the road network. To
add back connections, we iterate through dead-end vertices in G,
i.e., vertices with exactly one incident edge. We merge a dead-end
vertex v with an edge (u, w) if both of the following hold:

e The distance from v to (u, w) is less than Ryerge.

o |filter(T, (v, p,u))| or |filter(T, (v, p, w))| exceed a thresh-
old, where p is obtained by projecting v onto the line segment
(u, w).

Together, these conditions prevent the introduction of spurious
connections.

5 EVALUATION

In this section, we compare our two-stage map inference scheme
with RoadRunner against two GPS trajectory map inference algo-
rithms, BE [6] and Kharita [19], and one aerial imagery inference
approach, RoadTracer [5], on 16 sq km regions of four cities. BE
applies kernel density estimation followed by several refinement
steps. Kharita uses graph spanners to prune redundant edges from
an initial graph constructed with k-means clustering. RoadTracer
is the state-of-the-art computer vision approach that infers roads
from aerial imagery.

5.1 Dataset

We evaluate the approaches on a large dataset of over 60 thousand
GPS trajectories spanning 4km by 4km regions at the centers of
four cities: Los Angeles, Boston, Chicago, and New York City. We
use these regions as our evaluation dataset because:

o These regions contain diverse road structures, from complex
highway interchanges to small residential roads, and a wide
range of GPS noise, from near-perfect GPS accuracy in open
areas to heavy noise in the downtown core. We believe this
dataset reflects the challenges of automatic map inference
algorithms in real world.

o These regions (urban areas) resembles rapidly developing
cities such as Doha (Qatar), where digital maps lag reality. In
these cities, the construction of new complex road structures
such as highway junctions is also very common.

e These regions have good-quality ground truth map from
OpenStreetMap [14], which makes quantitative evaluation
possible.

5.2 Metrics

We evaluate inferred maps on two metrics: TOPO [7], which is com-
monly used in related work, and a shortest-path metric, which we
develop by combining ideas from several existing path-comparison-
based metrics [2, 20].

5.2.1  TOPO. TOPO captures both geometry and topology differ-
ences between two maps. We first drop “seeds” at 50-meter intervals
on every road in the ground truth map. For each seed, we try to find
a corresponding point in the inferred map with similar distance
and orientation (i.e., the angles of the edges that the seed and point
fall on). If there exists such a point, we say the seed is valid.

For each valid seed, we drop “holes” every 5 meters on the edges
of the ground truth map that can be reached within 300 meters
from the seed. We then drop “marbles” in the same way from the
nearest corresponding point in the inferred map. Then, we compute
the maximum one-to-one matching between the marbles and holes.
A marble and a hole can be matched only if the distance between
them is smaller than 15 meters and the difference between the
orientations of the edges they belong to is smaller than 45 degrees.
From this matching, we compute a precision and recall for the seed:

# of matched marbles # of matched holes
# of all marbles #of all holes
We compute the overall precision and recall in a region as the

average of the precision and recall from all seeds in this region.
In the computation of the overall precision, we ignore the invalid

recall =

precision =
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seeds in the region. In contrast, we consider the recall of an invalid
seed to be 0 in the computation of the overall recall of a region. This
yields a fair comparison when two inferred maps have different
numbers of valid seeds.

5.2.2  Shortest-path metric. We propose a shortest-path metric to
evaluate the correctness of navigation routes in the inferred map. In
each city, we randomly sample 10,000 origin-destination pairs using
the GPS trajectory data; each origin and destination is sampled
uniformly from the origins and destinations of the trajectories.
Then, for each sampled pair, we find the closest points to the origin
and the destination in the inferred map. We compute the shortest
path Pj,ferreq in the inferred map between these two points.

To evaluate the correctness of this path, we find the path Pgr
in the ground truth map that minimizes the Fréchet distance [4]
between Pipferreq and PGr. If Piyperreq uses an invalid road or
connection (e.g., the path jumps to a highway road from another
non-connected road), the corresponding portion of PGt may in-
volve a long detour, yielding a large Fréchet distance between the
two paths.

To aggregate results across all origin-destination pairs, we define
the routing error as the median Fréchet distance.

5.3 Parameters

For all the schemes we evaluated, we fix most of their parameters
except one tuning parameter, which we vary to explore the trade-off
between precision and recall (Table 2). We explain the choice of
this parameter for each different scheme below.

RoadRunner (RR). We vary the threshold of the minimum tra-
jectory number M in the scoring function (recall that we only add
a new edge toward angle 0 if there are at least M trajectories on
this direction). Increasing this threshold makes RoadRunner more
cautious when adding new roads.

Biagioni and Eriksson (BE). During map-matching-based prun-
ing, roads with fewer than L;,,, matched GPS trajectories are re-
moved from the road network graph. We vary Ly, ,. When Ly, is
higher, more roads are pruned. The authors set L, = 2.

Kharita. We vary the initial seed radius for k-means clustering.
This radius corresponds to the maximum degree of GPS noise that
Kharita can handle. A larger radius increases precision by merging
noisy GPS observations with other observations from the road, but
may also merge observations from two nearby roads. The authors
propose two seed radiuses, 20m and 75m.

In the following sections, we denote particular parameter settings
by suffixing the approach name with this setting. For example, in BE-
2, we set the minimum number of matched trajectories Ly, = 2.

5.4 Geometry and Topology Correctness

In this section, we focus on the geometry and topology correctness
of the inferred map. We evaluate BE, Kharita and RoadRunner
schemes as well as the RoadRunner-based two-stage schemes with
TOPO metric. The evaluation covers all the GPS data in our dataset
(approximately 4km by 4km for each city.)

In the two-stage map inference scheme, we first use RoadRunner
(Section 3) to generate the high precision map, covering the most
challenging areas. Then, we use the algorithm introduced in Section
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Scheme Parameter Notation Parameter Set

BE Minimum GPS traversals | 2, 5, 10, 30, 50

Kharita Initial seed radius 20, 50, 75, 100
RoadRunner | Minimum GPS traversals 2,3,4,6,10

Table 2: The parameter set we used for different schemes

4 to merge this high precision map with maps generated by BE or
Kharita.

Error-Rate Frontier of Different Schemes. To obtain a com-
prehensive understanding of the potential performance of all the
schemes, we evaluated the schemes with a wide range of param-
eters. The parameters we used for all the schemes are shown in
Table 2. For two-stage schemes, we evaluate them with all the pairs
of parameter combinations.

In Figure 7, we show the error-rate frontier of different schemes.
The error-rate frontier of a scheme is generated from the output
maps with all its different parameter configurations. We would like
to use this error-rate frontier to demonstrate the best achievable
performance of different algorithms. More specifically, we can com-
pare the error rates of different schemes conditioned on recall by
looking at the cross points of the schemes’ error-rate frontiers and
a horizontal line corresponding to a certain recall.

As shown in Figure 7, tuning the parameters of the existing
map inference algorithms can yield improvements in error rate.
However, due to the inherent limitations of these algorithms, the
improvement in the error rate often comes at the expense of a sharp
decrease in recall. The best achievable error rate is also limited.

By contrast, as a standalone scheme, RoadRunner can achieve
a significantly lower error-rate compared with other schemes in
all four cities. However, since RoadRunner sometimes fails to in-
fer roads when there are not enough GPS trajectories, its highest
achievable recall is lower compared to other schemes.

As we discussed in §4, our merging procedure is intended to
yield a two-stage solution that achieves both high precision and
high recall. Indeed, Figure 7, shows that the RoadRunner-based
two-stage solutions significantly reduce the error rate with no
impact on recall. For example, the error-rate frontier of the hybrid
of RoadRunner and BE completely surpasses the frontier of BE
scheme alone in each of the four cities.

These results show that when merging the RoadRunner scheme
with an existing map inference algorithm, the merging procedure
effectively replaces the high error-rate regions of the output of the
inference algorithm with RoadRunner’s accurate map. Meanwhile,
the roads missed by RoadRunner but found by the map inference
algorithm are mostly retained in the final inferred map.

Comparison with the best parameter settings. We take the
parameter setting that can produce the best average F; score for
each scheme as their best parameter setting. We compare our two-
stage schemes against BE and Kharita with the best parameter
settings. As shown in Figure 7, the two-stage scheme significantly
reduces the error rates by 5.2 points(33.6%) versus BE, and 24.3
points (60.7%) versus Kharita on average over the four cities, with
a slight improvement in recall.

Note that recall here is limited because the ground truth Open-
StreetMap road network includes alleys, service roads, and other
minor roads that are not covered by our GPS trajectory dataset.
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Figure 8: The median of the minimal Fréchet Distances in the
shortest-path metric. The unit of the y-axis is in meter.

5.5 Usability in Navigation Scenario

We evaluate the navigation usability of the inferred maps from
RoadRunner, BE, Kharita and the RoadRunner based two-stage
scheme. As shown in Figure 8, our RoadRunner scheme significantly

reduces the routing error by 3.9x versus BE, and 3.8x versus Kharita.

The two-stage scheme also yields a significant reduction in the
routing error, by 3.1x versus BE and 1.8x versus Kharita, even with
a slight improvement on the map coverage (from TOPO metric).

These results show that RoadRunner captures the major road
network very accurately. The two-stage scheme inherits this major
road network from RoadRunner, yielding higher confidence routes
in navigation scenario. The results also imply the importance of
getting road network correctly in challenging areas; this areas often
have a large volume of traffic and play an important role in a city’s
road network.

5.6 Integration with computer vision-based
solution

We also study the impact of RoadRunner when combined with a
computer-vision-based map inference solution that uses satellite
imagery to infer the location of roads. Specifically, we compare
the overall quality of the output map from RoadTracer[5] with a
RoadRunner-enhanced two-stage solution. Because RoadTracer is
also an incremental algorithm, in the two-stage solution, instead of
merging two maps into one, we first use RoadRunner to generate
a high precision map; then we use this map as the initial input to
RoadTracer, which fills in missing roads in the RoadRunner output
based on satellite imagery.

We use F; score of TOPO metric to quantify the overall quality of
the output maps. We show the comparison results in Table 3. For the
overall Fj score, our two-stage solution achieves an improvement of
16.43% on average over the four cities against the satellite imagery
alone solution.

We show the generated map from our two-stage solution in
Figure 9. We find this combination of RoadRunner and imagery
based solutions enables us to produce maps with much higher
quality than prior solutions: the GPS based solution RoadRunner
accurately captures the road structures in challenge areas where
existing computer-vision based solutions fail, on the other hand,
the imagery based solutions fill up the missing roads in areas where
GPS data is very sparse or not available. We envision that this
combination is the right way to take toward fully automated map
generation systems.
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Chicago New York City

Figure 9: The generated map of the two-stage scheme with RoadRunner RR-2 (yellow) and RoadTracer (cyan).

City RoadTracer | RR-2 + RoadTracer | Gain

Los Angeles 0.634 0.673 6.17%
Boston 0.540 0.608 12.68%
Chicago 0.585 0.653 11.56%
New York City 0.497 0.673 35.33%

Table 3: F; score of RoadTracer and RR-2 + RoadTracer

5.7 Runtime of RoadRunner

RoadRunner involves some computationally expensive operations,
but the running time of RoadRunner is practical. In our evaluation,
the CPU time (equivalent single-core running time) of our imple-
mentation is close to the KDE-based solution [6]. For example, in
Los Angeles, RoadRunner takes 110 minutes to process 2.5 million
GPS points in a 16 km? area on an AWS c5.9xlarge instance with
15% CPU utilization.

6 CONCLUSION

In this paper, we proposed a two-stage map inference architecture
that enables us to generate high precision road network graphs
without sacrificing coverage. As the core of this architecture, we pre-
sented RoadRunner, an automatic road network inference method
that leverages the long-term structure of GPS trajectories to gen-
erate accurate maps in the dense urban areas and complex inter-
sections where existing methods fail. We evaluated RoadRunner
together with two state-of-the-art GPS-based methods and a recent
computer vision-based solution on 64 km? from four U.S. cities.
Compared with the existing map-making methods, our RoadRun-
ner based two-stage scheme yields an improvement in the overall
quality of the inferred map by 15.29%! on average in TOPO F;score.
This quality improvement represents up to a 60.7% error rate reduc-
tion of road segments and up to a 3.1x reduction of routing errors
in navigation scenario, with a small increase in recall.

Insufficient precision of current automated map-making solu-
tions is perhaps the biggest obstacle that prevents them from real-
world deployment. We believe that our approach, which signif-
icantly improves the precision of automatically generated maps
while not reducing recall, marks an important step towards au-
tomating the process of road map generation.

112.17% for RR+BE, 17.28% for RR+Kharita, 16.43% for RR+RoadRunner
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