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Abstract
In this paper, we develop an unsupervised ap-
proach for multi-object tracking under the detect-
to-track framework: we assume that an object de-
tector trained on image-level bounding box an-
notations is available, but do not use any expen-
sive video-level bounding box and track annota-
tions. In our approach, we propose training an
RNN tracking model on unlabeled video using
self-supervised learning. However, learning sig-
nals proposed in prior work on self-supervised
single-object tracking, such as color propagation
and cycle-consistency, are not effective for train-
ing RNN trackers: they yield degenerate models
that, for instance, always match a new detection to
the track with the closest initial detection. We pro-
pose a novel self-supervised learning method that
we call dual-tracker consistency: we construct two
distinct inputs for one video segment, where each
input is a variation of the video segment where dif-
ferent information has been hidden; we then apply
two instances of a tracker independently on each
input, and back-propagate a loss that enforces con-
sistency between the two outputs. We evaluate our
method on the MOT17 benchmark, and find that,
when training only on a corpus of unlabeled video,
our fully unsupervised method is competitive with
four recent supervised state-of-the-art trackers that
train on expensive video-level annotations.

1 Introduction
Multi-object trackers identify all instances of a particular ob-
ject type in video, and track each instance through the seg-
ment of video in which it is visible in the camera frame.
Annotating training data for multi-object tracking is tedious
and costly; for example, annotation of pedestrian tracks in
just six minutes of video in the training set of the MOT15
Challenge [Leal-Taixé et al., 2015] requires an estimated 22
hours [Manen et al., 2017] of human labeling time using
LabelMe [Yuen et al., 2009]. While unsupervised, heuris-
tic detect-to-track methods [Bewley et al., 2016; Bochinski
et al., 2018] have been proposed that group detections into
tracks by estimating motion using a combination of spatial

and visual cues, these methods suffer low-accuracy in scenar-
ios with frequent occlusion where heuristics are insufficient.

Recent work has proposed applying self-supervised learn-
ing for training single-object tracking models on unlabeled
video [Vondrick et al., 2018; Wang et al., 2019]. These ap-
proaches train a model to propagate instance labels from a
reference frame through the rest of a video segment. In con-
trast to work on self-supervised representation learning from
video, these fully unsupervised approaches do not require
fine-tuning to apply the model for single-object tracking.

However, a significant limitation in prior work is that the
model independently compares pairs of frames at a time.
In multi-object tracking, a key challenge is robustly re-
localizing tracks across potentially long occlusions, espe-
cially when an object instance is occluded by other instances
of the same object type. Pairwise frame comparisons are thus
insufficient for high-accuracy multi-object tracking; instead,
learning recurrent features that encode the history of a track
is crucial for enabling robust re-localization. However, ex-
tending prior work to learn RNN parameters is challenging.
For example, Wang et al. [Wang et al., 2019] propose train-
ing using forward-backward consistency: from a patch in an
initial frame, after tracking forwards through video and then
backwards to return to the initial frame, the final patch should
align with the original patch. Training an RNN in this way
would be ineffective as the RNN could simply memorize the
features of the original patch.

To address this challenge, we propose a novel self-
supervised learning method, dual-tracker consistency. At a
high-level, we derive a learning signal from unlabeled video
by applying two instances of a tracker model (where the in-
stances share parameters) through two distinct input varia-
tions extracted from the same video segment, and training the
tracker to produce consistent tracking outputs across both in-
puts. We propose two alternative input-hiding schemes for
computing the input variations: occlusion-based hiding and
visual-spatial hiding. Occlusion-based hiding eliminates de-
tections in random intermediate subsequences of frames to
simulate occlusion incidents; it constructs two inputs by elim-
inating different subsequences. Visual-spatial hiding applies
the tracker once when only observing spatial inputs (bound-
ing box coordinates), and once when only observing visual
inputs (pixel values inside detection boxes). Then, on each
training step, we sample a segment of video, compute two in-



put variations under the chosen input-hiding scheme, apply a
tracker instance on each input, and back-propagate a learn-
ing signal that measures the consistency between tracks com-
puted across the two inputs. To attain high consistency, the
model must accurately group detections that correspond to
the same object: if the model were to instead arbitrarily group
detections into tracks, then variations in the inputs would lead
the two tracker instances to produce inconsistent outputs.

We use a detect-to-track framework, i.e., we first compute
object detections in each frame, and then group detections
into tracks across frames. We assume that a robust detector is
available—image-level bounding boxes are much cheaper to
annotate than tracks, and are required even in unsupervised
detect-to-track methods like SORT [Bewley et al., 2016].
Then, under the detect-to-track framework, the challenge is
to automatically learn to determine which detections corre-
spond to the same object across different frames, and to iden-
tify when an object enters or leaves the camera frame.

To implement dual-tracker consistency, we adapt a now
standard RNN model and tracker architecture from prior
work [Kim et al., 2018]: the tracker processes each frame
in sequence by matching detections in the current frame with
tracks computed up to the previous frame. In prior work, this
model is trained under a supervised procedure: they sample a
video segment 〈I0, . . . , In〉 and a track t in that segment, and
apply the tracker on t over the video segment. On each frame
Ij , the RNN outputs a probability distribution indicating the
likelihood that the prefix of t up to Ij matches with each de-
tection in Ij . Prior work back-propagates the label (i.e., the
correct detection of t in Ij) under cross entropy loss.

In contrast, under our method, on each training iteration,
we propose to sample a segment 〈I0, . . . , In〉 from a corpus
of unlabeled video, and apply the RNN model to compute a
transition matrix that specifies the probability that each detec-
tion in I0 (rows) matches with each detection in In (columns).
Then, when applying two instances of the tracker on two
input variations extracted from the segment, we obtain two
transition matrices (one from each instance). We compute
the dot-product similarity to measure the consistency between
these matrices, and back-propagate this as a loss function.

We evaluate our approach on the MOT17 benchmark
against 8 state-of-the-art methods, including both unsuper-
vised and supervised methods. We train our tracker model
using dual-tracker consistency over a corpus of unlabeled
video, which can be cheaply obtained. Like other unsuper-
vised methods, we use an object detector trained on image-
level bounding box annotations in MOT17Det, but do not use
any expensive video-level annotations. We find that our ap-
proach improves both IDF1 and MOTA accuracy over the un-
supervised baselines by 4% to 10%. Moreover, remarkably,
our fully unsupervised approach is competitive with four of
the five supervised methods we compared, even though these
methods train on expensive video-level bounding box and
track annotations.

2 Related Work
Self-supervised learning over video has been studied exten-
sively in many contexts. Most work focuses on learning
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Figure 1: Overview of dual-tracker consistency. An input-hiding
scheme produces two input variations, A and B. We apply the tracker
model on each input to derive two transition matrices, and back-
propagate a similarity score between the matrices that encourages
the model to produce consistent outputs across both inputs.

representations of video that can be applied through fine-
tuning for tasks such as activity recognition, image classifi-
cation, and object detection [Doersch et al., 2015; Doersch
and Zisserman, 2017; Srivastava et al., 2015]. More closely
related to our work, several recent approaches have proposed
leveraging widely available unlabeled video to directly train
single-object tracking models, without needing fine-tuning.
Vondrick et al. [Vondrick et al., 2018] train a model to col-
orize gray-scale video by propagating colors from a colored
reference frame. The model is then applied to track objects at
inference time by propagating instance IDs instead of colors.
Wang et al. [Wang et al., 2019] train a model to capture corre-
spondence by applying a cycle-consistent loss: from a patch
in an initial frame, after tracking forwards through video and
then backwards to return to the initial frame, the final patch
should align with the original patch.

Our work is also related to unsupervised, heuristic detect-
to-track multi-object tracking methods. SORT [Bewley et al.,
2016] proposes modeling the motion of a track based only on
spatial cues using a Kalman filter. To assign detections in the
next frame to tracks, SORT formulates a bipartite matching
problem where the cost is computed from the intersection-
over-union score between the detection bounding box and the
estimated track position. V-IOU [Bochinski et al., 2018] in-
corporates visual cues into this framework, leveraging optical
flows computed by comparing pixel values between pairs of
consecutive frames to update the position of a track through
segments where the detector fails to localize the track.

Several fully supervised multi-object tracking methods
have recently been proposed [Liu et al., 2020; Zhou et al.,
2020; Feng et al., 2019]. Although these methods yield high-



accuracy, they require video-level bounding box and track an-
notations that are expensive to hand-label, and thus are costly
to extend to new types of video. Tracktor++ [Bergmann et al.,
2019] applies the regression network in an object detector to
localize a track in the next frame. MHT-BLSTM [Kim et al.,
2018] applies a deep multiple hypothesis tracking approach,
incorporating a bilinear LSTM to store long-term visual and
spatial features and gate the track hypotheses. FAMNet [Chu
and Ling, 2019] jointly learns to extract features, estimate
affinity, and assign track IDs in one network.

3 Dual-Tracker Consistency
In our noval dual-tracker consistency method, we derive an
learning signal for training an RNN tracker model through
a three-step process. We assume that a corpus of unlabeled
video is available, along with detections of the object cate-
gory of interest computed automatically by an object detec-
tor in each video frame. First, during training, we repeat-
edly randomly sample a video segment 〈I0, . . . , In〉, where
each Ik is a frame. Let Dk by the detections automati-
cally computed in Ik, and let dki = (im, x, y, w, h) be a
detection in Dk, where (x, y, w, h) are the 4D spatial co-
ordinates (center point and lengths) of the detection bound-
ing box, and im is the window of Ik corresponding to that
box. We apply an input-hiding scheme to select two input
variations A(D), B(D) for the video segment, where each
variation is a modified sequence of detections in the frames,
A(D) = 〈DA

0 , . . . , D
A
n 〉, B(D) = 〈DB

0 , . . . , DB
n 〉. For ex-

ample, some detections may be removed entirely, while oth-
ers may be partially hidden. Second, we apply two instances
of the tracker model through each input variation to derive
two probabilistic tracking outputs, represented as transition
matrices. Third, we compare the transition matrices with dot-
product similarity to update the RNN parameters.

Figure 1 summarizes our approach.
Below, we first introduce the model architecture that we

adapt from prior work in Section 3.1. We then detail our
novel training procedure, including the computation of the
transition matrices and dot-product loss, in Section 3.2. Fi-
nally, we propose two input-hiding schemes for selecting the
input variations required by our approach in Section 4.

3.1 Tracker Model
We adopt a tracker model that is similar to prior work [Kim
et al., 2018]. We summarize the architecture in Figure 2.
Given a video segment 〈I0, . . . , In〉, and sets of detections
Dk = {dk1 , . . . , dkmk

} detected in each frame Ik, to initial-
ize the tracking process, we create a track ti = 〈d0i 〉 for
each detection d0i in the first video frame I0. On each subse-
quent frame Ik, the model outputs a probability pi,j that each
track ti corresponds to each detection dkj ∈ Dk. At inference
time, we formulate the problem of matching tracks with de-
tections in Ik as a bipartite matching problem, where the cost
of matching ti with dkj is 1 − pi,j . We solve this problem
and compute a minimum-cost matching using the Hungarian
algorithm; for each pair (ti, dkj ) in the matching, we append
dkj to ti. For each detection in Ik that no track matches to, we
create a new track for that detection.

The model consists of a CNN, RNN, and matcher network.
Together, these components score the likelihood that the ith
track, ti = 〈d1, . . . , dm〉, matches with the jth detection in
Ik, dkj . We first apply the CNN to derive detection-level fea-
tures. Given a detection d = (im, x, y, w, h), the CNN inputs
im resized to 64× 64, and consists of 6 strided convolutional
layers, with ReLU activation in the first 5 layers and linear ac-
tivation in the last layer. It outputs a 64-vector, which we con-
catenate with the 4D spatial coordinates to derive a 68-vector
detection representation f(d). Then, we compute track-level
features f(ti) by applying the RNN (an LSTM with 64 hid-
den states) over the sequence of detection-level features of
detections in the track, 〈f(d1), . . . , f(dm)〉. We use the out-
put of the RNN on the last timestep as the track-level fea-
tures f(ti). Finally, we apply a matching network to score
the likelihood that ti matches dkj . The matching network in-
puts the concatenation of f(ti) and f(dkj ), applies four fully-
connected layers, and outputs a match score.

3.2 Training Procedure
We develop a novel self-supervised learning method for train-
ing the model parameters on unlabeled video. During train-
ing, we repeatedly sample segments of up to 16 consecutive
video frames 〈I0, . . . , In〉. We apply one of two input-hiding
schemes, which we will detail in the following section, to
extract two distinct input variations A(D) and B(D) from a
sampled video segment, where each input is a sequence of
detections. We then apply instances of the tracker model on
each variation, where the instances share the same model pa-
rameters. Dual-tracker consistency trains the model by en-
forcing it to produce similar outputs on both inputs. To repre-
sent tracker outputs, we compute a transition matrix M (0,n),
where M

(0,n)
i,j is the probability that the track ti matches dnj .

When applying the model over video segments during train-
ing, we update tracks with new detections based on the scores
output by the model on intermediate frames, but do not create
additional tracks on frames after I0; thus, each track ti cor-
responds directly to a detection d0i in I0 (i.e., ti = 〈d0i , . . .〉).
Then, applying two instances of the tracker yields two tran-
sition matrices A(0,n) and B(0,n), where both matrices have
|D0| rows and |Dn| + 1 columns (the extra column repre-
sents tracks that are no longer visible). We train the model
(CNN, RNN, and matching network) end-to-end to maximize
the dot-product similarity between these matrices.

Below, we detail our method to compute transition matri-
ces, and discuss dot-product similarity loss.

Transition Matrix. We propose computing a transition ma-
trix M (0,k) on each frame Ik to represent the tracker outputs,
where M

(0,k)
i,j is the probability that the track ti matches the

detection dkj . On intermediate frames, we apply the Hungar-
ian method on M (0,k) to match detections in Dk with tracks,
updating each track with the matched detection (if any). On
the last frame In, we use the M (0,n) matrix produced un-
der different inputs (denoted A(0,n) and B(0,n)) to compute
and back-propagate a consistency score. Because we do not
create new tracks after I0 during training, M (0,n)

i,j is the like-
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Figure 2: Tracker model architecture. The model scores the likelihood that each detection in the current frame matches with each track.

lihood that d0i and dnj match (since ti begins with d0i ).
We first construct a score matrix S(0,k), by computing

S
(0,k)
i,j as the score (any real number) output by the tracker

model given the track ti and detection dkj . We then transform
the score matrix into a probability matrix to derive M (0,k).
We could simply compute M (0,k) by taking softmax along
rows in S(0,k). However, computing the transition matrix in
this way would allow the tracker to cheat and maximize sim-
ilarity between A(0,n) and B(0,n) by simply matching all de-
tections in I0 to a single detection dnj ∈ Dn. Indeed, we find
that in practice this yields degenerate models.

Thus, instead, we compute M (0,k),row and M (0,k),col by
applying softmax along rows and columns, respectively, and
compute M (0,k) = min(M (0,k),row,M (0,k),col):

M row
i,j =

exp(Si,j)∑
k exp(Si,k)

M col
i,j =

exp(Si,j)∑
k exp(Sk,j)

(1)

Mi,j =min(M row
i,j ,M

col
i,j ) (2)

This produces a transition matrix M (0,k) that is almost dou-
bly stochastic: rows and columns sum to at most 1, but not
necessarily exactly 1. The operation ensures that the model
must match each detection in I0 to unique detections in In to
maximize the consistency score between A(0,n) and B(0,n): if
two detections in I0 are matched to the same detection in In,
then the columnar softmax would reduce those probabilities
in the corresponding matrix to at most 0.5, thereby reducing
any dot-products involving those rows.

So far, M (0,k) does not indicate the likelihood that a track
fails to match to any detection. Determining when a track
is not visible in a frame (it may be transiently occluded, or
may have left the camera frame) is a key challenge in detect-
to-track approaches. To represent this case in our transition
matrix, we append an additional column to the score matrix
S(0,k) for the “absent” case, where a track does not appear
as a detection in Ik. The absent column is populated with
a constant score Si,absent = sabsent; the parameter sabsent is
learned during training. Thus, if the ith track does not appear
in a frame, the matching model should output low scores in
S(0,k) when matching that track to detections in Ik, which
will yield a large probability M

(0,k)
i,absent.

Dot-Product Similarity. We train the RNN tracker by com-
puting two transition matrices A(0,n) and B(0,n) over differ-
ent input variations, and then back-propagating a loss that

measures the inconsistency between the matrices. In particu-
lar, we use the dot-product to measure the similarity of corre-
sponding rows in the matrices. We define the loss as:

L = −
∑
i

log
∑
j

A
(0,n)
i,j B

(0,n)
i,j

Here, L is computed by taking the logarithm of the dot prod-
uct of corresponding rows in A(0,n) and B(0,n), averaged
across rows. Note that this is equivalent to the cross-entropy
loss between the diagonal matrix and the matrix product of
A(0,n) and the transpose of B(0,n).

This loss function has several desirable properties. First,
the dot-product is maximized when the matrices computed
based on different inputs are most similar. This pushes the
matching model to learn reasonable visual and spatial track-
ing constraints, because arbitrarily matching tracks to de-
tections will lead to dissimilarity. Second, the dot-product
pushes each matrix to be almost doubly stochastic rather than
leaving some rows and columns summing to much less than
1. The model can only produce doubly stochastic A(0,n) and
B(0,n) matrices by finding unique detections in In for each
detection in I0. Because the matching model is constrained
to observing one track and one detection at a time, it must
learn to match similar detections.

4 Input-Hiding Schemes
In this section, we detail two alternative input-hiding schemes
for selecting the two input variations, denoted A(D) =
〈DA

0 , . . . , D
A
n 〉 and B(D) = 〈DB

0 , . . . , DB
n 〉.

4.1 Occlusion-based Hiding
At a high level, occlusion-based hiding produces the varia-
tions A(D) and B(D) by simulating random occlusion inci-
dents where all detections in occluded frames are eliminated
from the input, i.e., if Ik is occluded for A(D), then DA

k is
empty. We only occlude intermediate frames Ik, 0 < k < n,
so that the transition matrices still compare detections in I0
with those in In. When processing an occluded Ik, the tracker
is forced to match all tracks to the absent column in that
frame, and re-localize the tracks after the occlusion.

We first introduce two schemes that do not work in isola-
tion, and then show that we can combine these schemes to
produce input variations that result in effective training.

Only-Occlusion. For each training sequence 〈I0, . . . , In〉,
Only-Occlusion randomly selects four indexes 0 < k1 ≤
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Figure 3: Occlusion-based hiding produces input variations with
different subsequences of occluded frames where all detections are
hidden from the tracker. It also independently applies the tracker be-
fore and after a hand-off frame (I4 and I2), and merges the outputs
through the matrix product.

k2 < k3 ≤ k4 < n to construct two disjoint frame subse-
quences 〈Ik1

, . . . , Ik2
〉 and 〈Ik3

, . . . , Ik4
〉. In A(D), we oc-

clude each frame Ik such that k1 ≤ k ≤ k2, and in B(D), we
occlude Ik if k3 ≤ k ≤ k4.

When training under Only-Occlusion, the tracker is forced
to leverage track features computed through the RNN to re-
localize tracks after each simulated occlusion ends. Learn-
ing to merely compare detection features across consecu-
tive frames would yield low accuracy since features in oc-
cluded frames are not observed. Furthermore, because one
tracker observes the detections and the other tracker does
not, the model must make similar tracking decisions when re-
localizing across occluded frames as it does when observing
detections in each frame.

However, in practice, Only-Occlusion produces a model
that simply memorizes the detections in I0, and computes
A(0,n) and B(0,n) by comparing the detections in In against
memorized detections. This strategy yields high similarity
because it is unaffected by simulated occlusions in intermedi-
ate frames. Thus, we must prevent the propagation of features
directly from I0 to In to make this scheme effective.

RNN Hand-off. RNN Hand-off prevents simple memoriza-
tion by cutting off the propagation of RNN features through
the application of two separate RNN executions. We se-
lect two indexes 0 < k5, k6 < n. Instead of computing
A(0,n) directly, we first apply the tracker on the frame se-
quence 〈I0, . . . , Ik5

〉 to derive a transition matrix A(0,k5) that
matches detections in I0 with detections in Ik5

. We then inde-
pendently apply the tracker on 〈Ik5

, . . . , In〉 to derive another
matrix A(k5,n) that matches detections in Ik5

with detections
in In. We combine these matrices through the matrix prod-
uct to compute A(0,n): we compute A(0,n) = A(0,k5)A(k5,n).
Similarly, we compute B(0,n) = B(0,k6)B(k6,n).

This scheme forces the tracker to find the same unique de-
tection in Ik5

(and Ik6
) for two detections of the same object

in I0 and In in order to maximize similarity between the ma-
trix products. On the other hand, though, a tracker that learns
to match tracks to detections by comparing only the detection
features in consecutive frames will exhibit high similarity be-
tween A(0,n) and B(0,n) under this scheme.

Combined Scheme. Only-Occlusion and RNN Hand-off
have opposite advantages and drawbacks. Thus, we combine
these in our occlusion-based hiding scheme. We first select
the two sequences for simulated occlusion, 〈Ik1

, . . . , Ik2
〉 and

〈Ik3
, . . . , Ik4

〉. Then, we randomly pick k5 and k6 such that
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Figure 4: Visual-spatial hiding. One variation includes only visual
inputs, and the other includes only spatial inputs.

k3 ≤ k5 ≤ k4 and k1 ≤ k6 ≤ k2, i.e., the hand-off for one
tracker occurs when the other tracker observes a simulated
occlusion. We summarize the scheme in Figure 3.

Under this scheme, neither memorizing features in I0 nor
comparing detections solely in a pairwise frame-by-frame
manner is an effective tracking strategy. Instead, the tracker
must learn to leverage RNN features for re-localizing across
simulated occlusion, while still ensuring the tracking deci-
sions reflect intermediate outputs.

4.2 Visual-Spatial Hiding
Under visual-spatial hiding, we apply one tracker instance
that observes only visual features and one tracker instance
that observes only spatial features: in A(D), we set x =
0, y = 0, w = 0, h = 0 for all detections, and in B(D),
we set im = 0. By encouraging similarity in the tracking
outputs, each tracker learns to leverage its input features and
track objects as robustly as possible.

To prevent the visual tracker from examining the back-
ground to extract an approximation of the spatial features, we
do not use a recurrent unit for the visual tracker; instead, its
matching network inputs visual features for detections in I0
and for detections in In, and scores each pair of detections in
A(0,n) without observing intermediate frames. We compute
B(0,n) through the spatial tracker, which inputs 4D spatial
coordinates for each detection, and processes frames with the
matching network and recurrent unit. Figure 4 illustrates the
training procedure.

Since the training process eliminates recurrent features for
the visual tracker instance, we make corresponding adjust-
ments to the inference process. First, during inference, we
compute M (0,k) for an input video sequence 〈I0, . . . , Ik〉 as
the minimum of the visual tracker output A(0,k) and the spa-
tial tracker output B(0,k). Additionally, to compute scores in
A(0,k), for each track, we compute match scores between 5
randomly selected images associated with the track and each
detection in Ik, and average these scores.

5 Evaluation
We compare our method and six baselines on the MOT17
challenge [Milan et al., 2016].

Baselines. We compare with the two unsupervised methods
(SORT [Bewley et al., 2016] and V-IOU [Bochinski et al.,
2018]), one semi-supervised method (Tracktor++ [Bergmann
et al., 2019]), and five fully supervised methods introduced
in Section 2. Like our approach, SORT and V-IOU require
image-level bounding box annotations (for training an ob-
ject detector), but do not train on video-level bounding box



Method IDF1 MOTA
Occlusion (ours) 52.4 56.7
Visual-Spatial (ours) 57.3 60.2
Spatial-Only (ours) 56.5 57.8
SORT 53.4 56.0
V-IOU 47.4 56.3

Table 1: Ablation study and comparison with un-
supervised baselines on the MOT17 training set.

Method IDF1 MOTA
Unsupervised Visual-Spatial (ours) 58.3 56.8

Methods SORT [Bewley et al., 2016] 39.8 43.1
IOU [Bochinski et al., 2017] 39.4 45.5

Semi-Supervised Tracktor [Bergmann et al., 2019] 52.3 53.5
MHT-BLSTM [Kim et al., 2018] 51.9 47.5

Supervised FAMNet [Chu and Ling, 2019] 48.7 52.0
Methods LSST [Feng et al., 2019] 62.3 54.7

GSM [Liu et al., 2020] 57.8 56.4
CenterTrack [Zhou et al., 2020] 59.6 61.5

Table 2: Performance on the MOT17 test set.

and track annotations. The fully supervised methods train on
video-level annotations; Tracktor++ also requires video-level
annotations for training a re-identification network.

Dataset. The MOT17 dataset [Milan et al., 2016] consists
of 14 video sequences of pedestrians in a wide range of con-
texts, including a moving camera inside a shopping mall and
a fixed, elevated view of an outdoor plaza. The dataset is split
into 7 training sequences and 7 test sequences; each split in-
cludes approximately 11 minutes of video.

Training. The semi-supervised and fully supervised base-
lines train on video-level bounding box and track annotations
provided by MOT17. In contrast, our method trains only on
a corpus of unlabeled video, and detections automatically in-
ferred in the video by an object detector. Because video-level
annotations are expensive to label, our method requires sub-
stantially less annotation time, and thus can greatly reduce the
effort needed to apply multi-object tracking on new datasets.

We collect unlabeled video from two sources: we use five
hours of video from seven YouTube walking tours, and all
train and test sequences from the PathTrack dataset [Manen et
al., 2017] (we do not use the PathTrack ground truth annota-
tions). We train our tracker model on an NVIDIA Tesla V100
GPU; training time varies between 24 and 48 hours depend-
ing on the input-hiding scheme. During training, we select
sequence lengths n between 4 and 16, and apply stochastic
gradient descent one sequence at a time. We apply the Adam
optimizer with learning rate 0.0001.

Metrics. We use the Multi-Object Tracking Accuracy
(MOTA) [Milan et al., 2016] and ID F1 Score (IDF1) [Ristani
et al., 2016] metrics. Broadly, MOTA and IDF1 measure the
accuracy of inferred tracks against ground truth tracks, and
penalize both when an inferred track contains a detection that
doesn’t match to some ground truth detection (or vice versa),
and when a ground truth track is split into two or more in-
ferred tracks (or vice versa).

Ablation Study and Unsupervised Baselines. We first com-
pare occlusion-based hiding, visual-spatial hiding, and the
unsupervised baselines on the MOT17 training set in Table
1. None of these methods train on MOT17 training annota-
tions. Visual-spatial hiding yields high performance on IDF1
and MOTA, improving over SORT and V-IOU by 4% on both
metrics. On the other hand, occlusion-based hiding performs

poorly on MOT17; objects are often visible in the video for
only a short duration, making it challenging to learn to re-
localize objects over simulated occlusion since the simulated
occlusion must then also be short.

Under Spatial-Only, we show results for visual-spatial hid-
ing when inputting only the spatial bounding box coordinates
of detections during inference (no image features). Even
when inputting only spatial features, our method improves
accuracy over SORT and V-IOU, suggesting that the model
learns spatial patterns that heuristics used in SORT and V-
IOU do not effectively capture.

Quantitative Results. Table 2 shows results on the MOT17
test set1; metrics are automatically computed by the challenge
website. Per the challenge policy, we only submit the best
method, and thus show Visual-Spatial performance.

Our approach again outperforms the unsupervised and
semi-supervised baselines. Moreover, its performance is
competitive with four recently proposed supervised tracking
methods: MHT-BLSTM [Kim et al., 2018], FAMNet [Chu
and Ling, 2019], LSST [Feng et al., 2019], and GSM [Liu
et al., 2020]: comparing against LSST, our approach im-
proves in MOTA but yields lower IDF1. Thus, we have
shown that by leveraging unlabeled video, our unsupervised
approach performs competitively with four recent fully su-
pervised MOT methods that train on expensive video-level
annotations. Nevertheless, CenterTrack [Zhou et al., 2020]
yields slightly higher accuracy on both metrics.

Qualitative Results. We show qualitative results in the sup-
plementary video.

6 Conclusion
In this paper, we have shown that a robust, fully unsuper-
vised multi-object tracker can be trained through a novel self-
supervised learning signal, dual-tracker consistency, that en-
forces consistency in the tracking outputs across different in-
put variations of one video sequence. Despite training only
on unlabeled video, our approach is competitive on MOT17
with four recent supervised trackers, which train on expensive
video-level bounding box and track annotations.

1These results are taken from https://motchallenge.net/results/
MOT17/, where our method is denoted UNS20regress. Baselines
are denoted SORT17, IOU17, Tracktor++, MHT bLSTM, FAMNet,
LSST17, GSM Tracktor, and CTTrackPub.

https://motchallenge.net/results/MOT17/
https://motchallenge.net/results/MOT17/
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