
SkyQuery: An Aerial Drone
Video Sensing Platform
Favyen Bastani, Songtao He, Ziwen Jiang, Osbert Bastani, Sam Madden



Applications of Aerial Drone Video Sensing

Traffic Analysis and Traffic Planning Periodic Infrastructure Inspection

Precision Agriculture Wildlife Population Management Parking Monitoring



Parking Monitoring Example 250 occupied,
150 available

120 occupied,
30 available

● Goal: Monitor # parked cars in 
various parts of a city

● Motivation
○ Could make live map showing 

where spots are available
○ Or provide data for city 

planning



Parking Monitoring Example: Challenges
To monitor # parked cars across a city, need to:
1. Apply object detector to detect cars



Parking Monitoring Example: Challenges
To monitor # parked cars across a city, need to:
1. Apply object detector to detect cars



Parking Monitoring Example: Challenges
To monitor # parked cars across a city, need to:
1. Apply object detector to detect cars



Parking Monitoring Example: Challenges
To monitor # parked cars across a city, need to:
1. Apply object detector to detect cars
2. Align video frames to obtain absolute coordinates



Parking Monitoring Example: Challenges
To monitor # parked cars across a city, need to:
1. Apply object detector to detect cars
2. Align video frames to obtain absolute coordinates
3. Analyze the car detections to identify cars that are stopped in one place for 

longer than a couple minutes



Parking Monitoring Example: Challenges
To monitor # parked cars across a city, need to:
1. Apply object detector to detect cars
2. Align video frames to obtain absolute coordinates
3. Analyze the car detections to identify cars that are stopped in one place for longer 

than a couple minutes
4. Update aerial drone routes to prioritize areas with more rapid change

Office lot: predictable, with regular increase at 
9-10am and decrease at 5pm

Retail/commercial corridor: less 
predictable, send drones more often



SkyQuery: An Aerial Drone Video Sensing Platform

cars = ObjectDetection(video, ‘car_model’)
car_traj = ObjectTracking(cars)
stopped = Select(car_traj, displacement < 3)
merged = Merge(stopped)
parked = Select(merged, duration > 120)
raw = ToMatrix(parked, f=Count, cell_size=64)
spots_bin = Aggregate(raw, f=Sum) > 0
spots = Thin(spots_bin)
rates, counts = ForecastRates(raw, model=Gaussian)
priorities = Aggregate(rates, f=Priority)

Example Program for Parking Monitoring 
and Locating Parking Spots



SkyQuery: An Aerial Drone Video Sensing Platform

cars = ObjectDetection(video, ‘car_model’)
car_traj = ObjectTracking(cars)
stopped = Select(car_traj, displacement < 3)
merged = Merge(stopped)
parked = Select(merged, duration > 120)
raw = ToMatrix(parked, f=Count, cell_size=64)
spots_bin = Aggregate(raw, f=Sum) > 0
spots = Thin(spots_bin)
rates, counts = ForecastRates(raw, model=Gaussian)
priorities = Aggregate(rates, f=Priority)

Example Program for Parking Monitoring 
and Locating Parking Spots



SkyQuery: An Aerial Drone Video Sensing Platform



Query Language

Tables: bold names like cars, car_traj, and stopped.
Operations: ObjectDetection, ObjectTracking, etc.
Operations transform input tables into output tables.

Example Program for Parking Monitoring 
and Locating Parking Spots

cars = ObjectDetection(video, ‘car_model’)
car_traj = ObjectTracking(cars)
stopped = Select(car_traj, displacement < 3)
merged = Merge(stopped)
parked = Select(merged, duration > 120)
raw = ToMatrix(parked, f=Count, cell_size=64)
spots_bin = Aggregate(raw, f=Sum) > 0
spots = Thin(spots_bin)
rates, counts = ForecastRates(raw, model=Gaussian)
priorities = Aggregate(rates, f=Priority)



Query Language: Types of Tables

Detections: each row is a 
bounding polygon

Sequences: each row is a 
sequence of detections

Matrices: a spatio-temporal matrix 
that divides the region into a 2D grid

● Associates time series to each grid cell
● e.g., # parked cars in that cell over time
● Each row is one observation of the time 

series at a particular cell



Query Language: Types of Tables

Detections: each row is a 
bounding polygon

Sequences: each row is a 
sequence of detections

Matrices: a spatio-temporal matrix that 
divides the region into a 2D grid

● Associates time series to each grid cell
● e.g., # parked cars in that cell over time
● Each row is one observation of the time 

series at a particular cell

ID Time Bounding Polygon

d1 0 (5, 10) to (20, 20)

d2 0 (6, 23) to (18, 35)

d3 1 (6, 25) to (20, 35)

d4 1 (5, 10) to (20, 20)

d5 1 (10, 12) to (35, 25)

d6 2 ...



Query Language: Types of Tables

Detections: each row is a 
bounding polygon

Sequences: each row is a 
sequence of detections

Matrices: a spatio-temporal matrix that 
divides the region into a 2D grid

● Associates time series to each grid cell
● e.g., # parked cars in that cell over time
● Each row is one observation of the time 

series at a particular cell

ID Time Bounding Polygon

d1 0 (5, 10) to (20, 20)

d2 0 (6, 23) to (18, 35)

d3 1 (6, 25) to (20, 35)

d4 1 (5, 10) to (20, 20)

d5 1 (10, 12) to (35, 25)

d6 2 ...

Time Sequence <d#(timestamp)>

0 d1(0), d4(2), d6(3), d11(6), d13(7), d18(9)

0 d2(0), d3(1), d5(2), d7(3), d8(4), d10(5)

4 d9(4), d12(6), d15(8)

7 d14(7), d16(8), d19(10), d21(11), d22(12)

8 d17(8), d20(10), d23(14), d24(15), d25(16)

17 d26(17), d27(19)



Query Language: Types of Tables

Detections: each row is a 
bounding polygon

Sequences: each row is a 
sequence of detections

Matrices: a spatio-temporal matrix 
that divides the region into a 2D grid

● Associates time series to each grid cell
● e.g., # parked cars in that cell over time
● Each row is one observation of the time 

series at a particular cell

Time Cell Value

0 (0, 0) 0

0 (0, 1) 0

20 (1, 0) 4

40 (2, 0) 0

40 (2, 1) 10



cars = ObjectDetection(video, ‘car_model’)
car_traj = ObjectTracking(cars)
stopped = Select(car_traj, displacement < 3)
merged = Merge(stopped)
parked = Select(merged, duration > 120)
raw = ToMatrix(parked, f=Count, cell_size=64)
spots_bin = Aggregate(raw, f=Sum) > 0
spots = Thin(spots_bin)
rates, counts = ForecastRates(raw, model=Gaussian)
priorities = Aggregate(rates, f=Priority)



cars = ObjectDetection(video, ‘car_model’)
car_traj = ObjectTracking(cars)
stopped = Select(car_traj, displacement < 3)
merged = Merge(stopped)
parked = Select(merged, duration > 120)
raw = ToMatrix(parked, f=Count, cell_size=64)
spots_bin = Aggregate(raw, f=Sum) > 0
spots = Thin(spots_bin)
rates, counts = ForecastRates(raw, model=Gaussian)
priorities = Aggregate(rates, f=Priority)



cars = ObjectDetection(video, ‘car_model’)
car_traj = ObjectTracking(cars)
stopped = Select(car_traj, displacement < 3)
merged = Merge(stopped)
parked = Select(merged, duration > 120)
raw = ToMatrix(parked, f=Count, cell_size=64)
spots_bin = Aggregate(raw, f=Sum) > 0
spots = Thin(spots_bin)
rates, counts = ForecastRates(raw, model=Gaussian)
priorities = Aggregate(rates, f=Priority)



cars = ObjectDetection(video, ‘car_model’)
car_traj = ObjectTracking(cars)
stopped = Select(car_traj, displacement < 3)
merged = Merge(stopped)
parked = Filter(merged, duration > 120)
raw = ToMatrix(parked, f=Count, cell_size=64)
spots_bin = Aggregate(raw, f=Sum) > 0
spots = Thin(spots_bin)
rates, counts = ForecastRates(raw, model=Gaussian)
priorities = Aggregate(rates, f=Priority)



cars = ObjectDetection(video, ‘car_model’)
car_traj = ObjectTracking(cars)
stopped = Select(car_traj, displacement < 3)
merged = Merge(stopped)
parked = Filter(merged, duration > 120)
raw = ToMatrix(parked, f=Count, cell_size=64)
spots_bin = Aggregate(raw, f=Sum) > 0
spots = Thin(spots_bin)
rates, counts = ForecastRates(raw, model=Gaussian)
priorities = Aggregate(rates, f=Priority)



cars = ObjectDetection(video, ‘car_model’)
car_traj = ObjectTracking(cars)
stopped = Select(car_traj, displacement < 3)
merged = Merge(stopped)
parked = Select(merged, duration > 120)
raw = ToMatrix(parked, f=Count, cell_size=64)
spots_bin = Aggregate(raw, f=Sum) > 0
spots = Thin(spots_bin)
rates, counts = ForecastRates(raw, model=Gaussian)
priorities = Aggregate(rates, f=Priority)



cars = ObjectDetection(video, ‘car_model’)
car_traj = ObjectTracking(cars)
stopped = Select(car_traj, displacement < 3)
merged = Merge(stopped)
parked = Select(merged, duration > 120)
raw = ToMatrix(parked, f=Count, cell_size=64)
spots_bin = Aggregate(raw, f=Sum) > 0
spots = Thin(spots_bin)
rates, counts = ForecastRates(raw, model=Gaussian)
priorities = Aggregate(rates, f=Priority)



cars = ObjectDetection(video, ‘car_model’)
car_traj = ObjectTracking(cars)
stopped = Select(car_traj, displacement < 3)
merged = Merge(stopped)
parked = Select(merged, duration > 120)
raw = ToMatrix(parked, f=Count, cell_size=64)
spots_bin = Aggregate(raw, f=Sum) > 0
spots = Thin(spots_bin)
rates, counts = ForecastRates(raw, model=Gaussian)
priorities = Aggregate(rates, f=Priority)

Suppose that:
● A drone observes a stopped car
● 5 minutes later, another drone observes car 

with similar appearance in the same spot

Merge(...) would merge these sequences into one 
sequence.



cars = ObjectDetection(video, ‘car_model’)
car_traj = ObjectTracking(cars)
stopped = Select(car_traj, displacement < 3)
merged = Merge(stopped)
parked = Select(merged, duration > 120)
raw = ToMatrix(parked, f=Count, cell_size=64)
spots_bin = Aggregate(raw, f=Sum) > 0
spots = Thin(spots_bin)
rates, counts = ForecastRates(raw, model=Gaussian)
priorities = Aggregate(rates, f=Priority)



cars = ObjectDetection(video, ‘car_model’)
car_traj = ObjectTracking(cars)
stopped = Select(car_traj, displacement < 3)
merged = Merge(stopped)
parked = Select(merged, duration > 120)
raw = ToMatrix(parked, f=Count, cell_size=64)
spots_bin = Aggregate(raw, f=Sum) > 0
spots = Thin(spots_bin)
rates, counts = ForecastRates(raw, model=Gaussian)
priorities = Aggregate(rates, f=Priority)



cars = ObjectDetection(video, ‘car_model’)
car_traj = ObjectTracking(cars)
stopped = Select(car_traj, displacement < 3)
merged = Merge(stopped)
parked = Select(merged, duration > 120)
raw = ToMatrix(parked, f=Count, cell_size=64)
spots_bin = Aggregate(raw, f=Sum) > 0
spots = Thin(spots_bin)
rates, counts = ForecastRates(raw, model=Gaussian)
priorities = Aggregate(rates, f=Priority)



cars = ObjectDetection(video, ‘car_model’)
car_traj = ObjectTracking(cars)
stopped = Select(car_traj, displacement < 3)
merged = Merge(stopped)
parked = Select(merged, duration > 120)
raw = ToMatrix(parked, f=Count, cell_size=64)
spots_bin = Aggregate(raw, f=Sum) > 0
spots = Thin(spots_bin)
rates, counts = ForecastRates(raw, model=Gaussian)
priorities = Aggregate(rates, f=Priority)



cars = ObjectDetection(video, ‘car_model’)
car_traj = ObjectTracking(cars)
stopped = Select(car_traj, displacement < 3)
merged = Merge(stopped)
parked = Select(merged, duration > 120)
raw = ToMatrix(parked, f=Count, cell_size=64)
spots_bin = Aggregate(raw, f=Sum) > 0
spots = Thin(spots_bin)
rates, counts = ForecastRates(raw, model=Gaussian)
priorities = Aggregate(rates, f=Priority)



SkyQuery: Incorporates Three New Techniques
● Fast, high-accuracy frame alignment method

● Change-aware object detection for efficiently 
detecting small objects

● Drone router to prioritize flights over 
unpredictable areas



Fast, Accurate Frame Alignment

● Efficiently combine GPS and compass readings 
with image features

● Leverage optimizations such as employing 
optical flow for updating position estimate 
across consecutive frames



Change-Aware Object Detection

For detecting small objects:
● Increase speed by using a shallow 

network (don’t need large field of view)
● Increase accuracy by comparing 

multiple frames over time



Drone Router: Forecasting Approach

● Forecast the current time series value 
in a matrix table at each cell

● Prioritize cells with high-variance 
probability distributions when 
computing routes





Conclusion

● Aerial drone video sensing has numerous applications
● But implementing systems is challenging
● SkyQuery: addresses these challenges and facilitates the development of 

applications like wildlife population management to precision agriculture

For code/data, see our project webpage:
https://favyen.com/skyquery/

https://favyen.com/skyquery/

