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Abstract

In this paper, we propose a self-supervised learning procedure for training a robust
multi-object tracking (MOT) model given only unlabeled video. While several
self-supervisory learning signals have been proposed in prior work on single-object
tracking, such as color propagation and cycle-consistency, these signals cannot be
directly applied for training RNN models, which are needed to achieve accurate
MOT: they yield degenerate models that, for instance, always match new detections
to tracks with the closest initial detections. We propose a novel self-supervisory
signal that we call cross-input consistency: we construct two distinct inputs for
the same sequence of video, by hiding different information about the sequence
in each input. We then compute tracks in that sequence by applying an RNN
model independently on each input, and train the model to produce consistent
tracks across the two inputs. We evaluate our unsupervised method on MOT17 and
KITTI — remarkably, we find that, despite training only on unlabeled video, our
unsupervised approach outperforms four supervised methods published in the last
1–2 years, including Tracktor++ [1], FAMNet [5], GSM [18], and mmMOT [29].

1 Introduction

Multi-object trackers identify all instances of a particular object type in video, and track each instance
through the segment of video in which it is visible in the camera frame. Annotating training data
for multi-object tracking is tedious and costly; for example, annotation of pedestrian tracks in just
six minutes of video in the training set of the MOT15 Challenge [14] requires an estimated 22
hours [20] of human labeling time using LabelMe [28]. While unsupervised, heuristic detect-to-track
methods [2, 4] have been proposed that group detections into tracks by estimating motion using a
combination of spatial and visual cues, these methods suffer low-accuracy in scenarios with frequent
occlusion where heuristics are insufficient.

Recent work has proposed applying self-supervised learning for training single-object tracking
models on unlabeled video [24, 25]. These approaches train a model to propagate instance labels
from a reference frame through the rest of a video sequence. In contrast to work on self-supervised
representation learning from video, these fully unsupervised approaches do not require fine-tuning to
apply the model for single-object tracking.

However, a significant limitation in prior work is that the model independently compares pairs of
frames at a time. In multi-object tracking, a key challenge is robustly re-localizing tracks across
potentially long occlusions, especially when an object instance is occluded by other instances of the
same object type. Pairwise frame comparisons are thus insufficient for high-accuracy multi-object
tracking; instead, learning recurrent features that encode the history of a track is crucial for enabling
robust re-localization. However, extending prior work to learn RNN parameters is challenging. For
example, Wang et al. [25] propose training using forward-backward consistency: from a patch in an
initial frame, after tracking forwards through video and then backwards to return to the initial frame,
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the final patch should align with the original patch. Training an RNN in this way would be ineffective
as the RNN could simply memorize the features of the original patch.

To address this challenge, we propose a novel self-supervised learning method, cross-input con-
sistency. We first compute object detections in each frame of unlabeled video (like unsupervised,
heuristic detect-to-track methods, we assume that a robust detector is available). Then, we derive a
learning signal from the unlabeled video by sampling a short sequence of contiguous frames from the
video, constructing two input variations of that sequence that each hide different information about
objects detected in the sequence, and training the tracker to produce consistent tracking outputs when
applied independently on each of the two inputs. We propose two alternative input-hiding schemes
for computing the input variations: visual-spatial hiding and occlusion-based hiding. Visual-spatial
hiding applies the tracker once when only observing spatial inputs (bounding box coordinates in
the video frame), and once when only observing visual inputs (pixel values inside detection boxes).
Occlusion-based hiding eliminates information about object detections in random intermediate sub-
sequences of frames to simulate occlusion incidents; thus, it constructs two inputs by eliminating
different subsequences of detections in each input. After sampling a sequence of video and com-
puting the two input variations under the chosen input-hiding scheme, we apply the tracker model
independently on each input, and back-propagate a learning signal that measures the consistency
between tracks computed across the two inputs. To attain high consistency, the model must accurately
group detections that correspond to the same object: if the model were to instead arbitrarily group
detections into tracks, then variations in the inputs would cause the tracker to produce inconsistent
outputs.

To implement cross-input consistency, we adapt a now standard RNN model and tracker architecture
from prior work [12]: the tracker processes each frame in sequence by matching detections in the
current frame with tracks computed up to the previous frame. In prior work, this model is trained
under a supervised procedure: they sample a video sequence 〈I0, . . . , In〉 and a track t in that
sequence, and apply the tracker on t over the sequence. On each frame Ij , the RNN outputs a
probability distribution indicating the likelihood that the prefix of a track t up to Ij matches with
each detection in Ij . Prior work back-propagates the label (i.e., the correct detection of t in Ij) under
cross entropy loss.

In contrast, under our method, on each training iteration, we propose to sample a sequence
〈I0, . . . , In〉 from a corpus of unlabeled video, and apply the RNN model to compute a transi-
tion matrix that specifies the probability that each detection in I0 (rows) matches with each detection
in In (columns). We select the sequence length n so that most objects in I0 are still visible in In.
Then, when applying the tracker on two input variations extracted from the sequence, we obtain
two transition matrices (one for each input). We compute the dot-product similarity to measure the
consistency between these matrices, and back-propagate the negative similarity as a loss function.

We evaluate our approach on the MOT17 and KITTI benchmarks against 9 baselines, including both
unsupervised and supervised methods. We train our tracker model using cross-input consistency over
a corpus of unlabeled video, which can be cheaply obtained. Like other unsupervised methods, we
use an object detector trained on image-level bounding box annotations in COCO [17], but do not use
any expensive video-level annotations. We find that, on MOT17, our approach improves both IDF1
and MOTA accuracy over the unsupervised baselines by 14% to 18%. Moreover, remarkably, our
fully unsupervised approach outperforms five of the seven supervised methods we compared, even
though these methods train on expensive video-level bounding box and track annotations.

Our code is available at https://favyen.com/uns20/.

2 Related Work

Self-supervised learning over video has been studied extensively in many contexts. Most work focuses
on learning representations of video that can be applied through fine-tuning for tasks such as activity
recognition, image classification, and object detection [6, 7, 9, 15, 23, 26]. More closely related to
our work, several recent approaches have proposed leveraging widely available unlabeled video to
directly train single-object tracking models, without needing fine-tuning [13, 16]. Vondrick et al. [24]
train a model to colorize gray-scale video by propagating colors from a colored reference frame. The
model is then applied to track objects at inference time by propagating instance IDs instead of colors.
Wang et al. [25] train a model to capture correspondence by applying a cycle-consistent loss: from
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Figure 1: Overview of cross-input consistency. An input-hiding scheme produces two inputs, A and
B, from one video sequence; these inputs contain identical information about objects detected in the
first and last frames of the sequence, but vary in intermediate frames. We apply the tracker model on
each input to derive two transition matrices that match detections between the first and last frames
to represent tracker outputs. We then back-propagate a similarity score between the matrices that
encourages the model to produce consistent outputs across both inputs.
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Figure 2: Tracker model architecture. The model scores the likelihood that each detection in the
current frame matches with each track.

a patch in an initial frame, after tracking forwards through video and then backwards to return to
the initial frame, the final patch should align with the original patch. As we discussed in Section 1,
self-supervisory signals used in prior work such as color propagation and cycle-consistency are not
effective for training RNN models, which are needed to achieve accurate MOT.

Our work is also related to unsupervised, heuristic detect-to-track multi-object tracking methods
such as SORT [2] and V-IOU [4]. These methods group detections across different frames using a
combination of heuristic spatial cues (e.g., Kalman filter over bounding box coordinates) and visual
cues (e.g., optical flow) to track objects. Like our approach, these methods assume that a robust
detector is available; however, because they rely on heuristics to group detections into tracks, they
suffer low-accuracy in scenarios with frequent occlusion.

Multi-object tracking has been studied extensively in supervised settings, where methods are trained
on video-level bounding box and track annotations [1, 5, 8, 12, 18, 30]. However, such annotations
are expensive to hand-label, and so these methods are costly to extend to new types of video.

Other work explores using unsupervised and self-supervised learning to further improve the perfor-
mance of fully supervised methods. SimpleReID [11] proposes improving the performance of one
supervised method, CenterTrack [30], by training a re-identification model through unsupervised
learning. However, while the model can in principle be trained only on image-level annotations
through hallucinated motion techniques, their SimpleReID+CenterTrack tracking method depends
on expensive video-level annotations to attain high-accuracy. In contrast, our method achieves
competitive results without any video-level supervision.

3 Cross-Input Consistency

In our novel cross-input consistency method, we derive an learning signal for training an RNN
tracker model through a three-step process. We assume that a corpus of unlabeled video is available,
along with an object detector for the object category of interest. During pre-processing, we apply
the detector on each frame of unlabeled video to compute object detections. Then, during training,
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we first repeatedly randomly sample a sequence of contiguous frames from the video, 〈I0, . . . , In〉,
where each Ik is a video frame. Let Dk by the detections automatically computed in Ik by the
detector, and let dki = (im, x, y, w, h) be a detection in Dk, where (x, y, w, h) are the 4D spatial
coordinates (center point and lengths) of the detection bounding box, and im is the window of
Ik corresponding to that box. We apply an input-hiding scheme to select two input variations
A(D), B(D) for the video segment, where each variation is a modified sequence of detections in
the frames, A(D) = 〈DA

0 , . . . , D
A
n 〉, B(D) = 〈DB

0 , . . . , DB
n 〉. For example, some detections may

be removed entirely, while others may be partially hidden. Second, we apply the tracker model
independently on each input variation to derive two probabilistic tracking outputs (one per input),
represented as transition matrices. Third, we compare the transition matrices with dot-product
similarity to update the RNN parameters.

Figure 1 summarizes our approach.

Below, we first introduce the model architecture that we adapt from prior work in Section 3.1. We
then detail our novel training procedure, including the computation of the transition matrices and
dot-product loss, in Section 3.2. Finally, we propose two input-hiding schemes for selecting the input
variations required by our approach in Section 4.

3.1 Background: Tracker Model

We adopt a tracker model that is similar to prior work [12]. We summarize the architecture in Figure
2. Given a video sequence 〈I0, . . . , In〉, and sets of detections Dk = {dk1 , . . . , dkmk

} detected in each
frame Ik, to initialize the tracking process, we create a length-1 track ti = 〈d0i 〉 for each detection d0i
in the first video frame I0. When processing subsequent frames, we will match the new detections
with existing tracks, extending existing tracks if there is a match and initializing new tracks otherwise.
Specifically, on each subsequent frame Ik, the model outputs a probability pi,j that each track ti
corresponds to each detection dkj ∈ Dk. At inference time, we formulate the problem of matching
tracks with detections in Ik as a bipartite matching problem, where the cost of matching ti with
dkj is 1− pi,j . We solve this problem and compute a minimum-cost matching using the Hungarian
algorithm; for each pair (ti, dkj ) in the matching, we append dkj to ti. For each detection in Ik that no
track matches to, we create a new track for that detection.

The model consists of a CNN, RNN, and matcher network. Together, these components score the
likelihood that the ith track, ti = 〈d1, . . . , dm〉, matches with the jth detection in Ik, dkj . We first
apply the CNN to derive detection-level features. Given a detection d = (im, x, y, w, h), the CNN
inputs im resized to 64× 64, and consists of 6 strided convolutional layers, with ReLU activation in
the first 5 layers and linear activation in the last layer. It outputs a 64-vector, which we concatenate
with the 4D spatial coordinates to derive a 68-vector detection representation f(d). Then, we compute
track-level features f(ti) by applying the RNN (an LSTM with 64 hidden states) over the sequence
of detection-level features of detections in the track, 〈f(d1), . . . , f(dm)〉. We use the output of the
RNN on the last timestep as the track-level features f(ti). Finally, we apply a matching network to
score the likelihood that ti matches dkj . The matching network inputs the concatenation of f(ti) and
f(dkj ), applies four fully-connected layers, and outputs a match score.

3.2 Training Procedure

We develop a novel self-supervised learning method for training the model parameters on unlabeled
video. During training, we repeatedly sample sequences of video 〈I0, . . . , In〉. We apply one of
two input-hiding schemes, which we will detail in the following section, to extract two distinct
input variations A(D) and B(D) from a sampled video sequence, where each input is a sequence
of detections. We then apply the tracker independently on A(D) and B(D) to derive two tracking
outputs for the same video sequence. In cross-input consistency, we train the model by enforcing
similarity between these two outputs.

To represent tracker outputs, we compute an |D0| × |Dn| + 1 transition matrix M (0,n), where
M

(0,n)
i,j , j < |Dn| is the probability that the track ti matches dnj . We use the last column to represent

tracks that are no longer visible in In, i.e., M (0,n)
i,|Dn| is the probability that the track ti has exited the

camera frame. When applying the model over video sequences during training, we update tracks with
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new detections based on the scores output by the model on intermediate frames, but do not create
additional tracks on frames after I0; thus, each track ti corresponds directly to a detection d0i in I0
(i.e., ti = 〈d0i , . . .〉). Thus, we can also think of M (0,n) as the probability that a detection in the first
frame d0i matches a detection in the last frame dnj .

Applying the tracker on both input variations yields two transition matrices A(0,n) and B(0,n) that
match objects detected in I0 with those in In. We train the model (CNN, RNN, and matching network)
to maximize the dot-product similarity between these matrices. In addition to pushing the model to
produce consistent outputs across both inputs, we also design our training method so that the model
cannot attain a high similarity score by, for example, saying that all objects visible in I0 are no longer
visible in In.

In our method, it is important that the training sequence length n be chosen so that, in most sequences,
most (but not all) objects in I0 are still visible in In, but that objects nevertheless move non-trivially
during the sequence (so that the tracking task is not too easy). In general, we find that setting n to
one-half of the average time that objects linger in the camera frame works well; this value can be
quickly estimated by hand-labeling the duration of a few (e.g., 10-20) objects randomly sampled
from the video.

Below, we detail our method to compute transition matrices, and discuss dot-product similarity loss.

Transition Matrix. We propose computing a transition matrix M (0,k) on each frame Ik to represent
the tracker outputs, where M

(0,k)
i,j is the probability that the track ti matches the detection dkj . On

intermediate frames, we apply the Hungarian method on M (0,k) to match detections in Dk with tracks,
updating each track with the matched detection (if any). On the last frame In, we use the M (0,n)

matrix produced under different inputs (denoted A(0,n) and B(0,n)) to compute and back-propagate
a consistency score. Because we do not create new tracks after I0 during training, M (0,n)

i,j is the
likelihood that d0i and dnj match (since ti begins with d0i ).

We first construct a score matrix S(0,k), by computing S
(0,k)
i,j as the score (any real number) output

by the tracker model given the track ti and detection dkj . We then transform the score matrix into a
probability matrix to derive M (0,k). We could simply compute M (0,k) by taking softmax along rows
in S(0,k). However, computing the transition matrix in this way would allow the tracker to cheat and
maximize similarity between A(0,n) and B(0,n) by simply matching all detections in I0 to a single
detection dnj ∈ Dn. Indeed, we find that in practice this yields degenerate models.

Thus, instead, we compute M (0,k),row and M (0,k),col by applying softmax along rows and columns,
respectively, and compute M (0,k) = min(M (0,k),row,M (0,k),col):

M row
i,j =

exp(Si,j)∑
k exp(Si,k)

M col
i,j =

exp(Si,j)∑
k exp(Sk,j)

Mi,j =min(M row
i,j ,M

col
i,j ) (1)

This produces a transition matrix M (0,k) that is almost doubly stochastic: rows and columns sum
to at most 1, but not necessarily exactly 1. The operation ensures that the model must match each
detection in I0 to unique detections in In to maximize the consistency score between A(0,n) and
B(0,n): if two detections in I0 are matched to the same detection in In, then the columnar softmax
would reduce those probabilities in the corresponding matrix to at most 0.5, thereby reducing any
dot-products involving those rows.

Dot-Product Similarity. We train the RNN tracker by computing two transition matrices A(0,n)

and B(0,n) over different input variations, and then back-propagating a loss that measures the
inconsistency between the matrices. In particular, we use the dot-product to measure the similarity of
corresponding rows in the matrices. We define the loss as:

L = −
∑
i

log
∑
j

A
(0,n)
i,j B

(0,n)
i,j

Here, L is computed by taking the logarithm of the dot product of corresponding rows in A(0,n)

and B(0,n), averaged across rows. Note that this is equivalent to the cross-entropy loss between the
diagonal matrix and the matrix product of A(0,n) and the transpose of B(0,n).
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Figure 3: Visual-spatial hiding. One input includes only visual information about the detections,
while the other includes only spatial bounding box coordinates.

This loss function has several desirable properties. First, the dot-product is maximized when the
matrices computed based on different inputs are most similar. This pushes the matching model
to learn reasonable visual and spatial tracking constraints, because arbitrarily matching tracks to
detections will lead to dissimilarity. Second, the dot-product pushes each matrix to be almost doubly
stochastic rather than leaving some rows and columns summing to much less than 1. The model can
only produce doubly stochastic A(0,n) and B(0,n) matrices by finding unique detections in In for
each detection in I0.

Spatial Mask. In some cases, training as described above may converge at a local minimum where
the model outputs uniform probabilities for all entries in M . To mitigate this issue, we add a spatial
constraint to the loss that penalizes the tracker when it matches detections that are highly improbable
to correspond to the same object based on bounding box positions. We first compute a mask matrix
C(0,n) so that C(0,n)

i,j = 0 if it is “improbable” that d0i matches dnj , and C
(0,n)
i,j = 1 otherwise. Then,

we compute L as:
L = −

∑
i

log
∑
j

A
(0,n)
i,j B

(0,n)
i,j C

(0,n)
i,j

We determine whether matches in C are improbable by applying a simple floodfill-like algorithm that
propagates sets of labels from the first frame I0 to the last frame In. If the label from a detection d0i in
I0 does not propagate to a detection dkj , then it implies there is no sequence of intermediate detections
that could form a track between d0i and dkj . In I0, we label each detection d0i with a set containing
only that detection, i.e., {d0i }. In Ik, we label each detection dkj with the union of sets of labels of
detections dk−li in preceding frames Ik−l (1 ≤ l ≤ 10) such that the bounding boxes of dkj and dk−li
intersect. Note that we consider several preceding frames since the detector may occasionally fail to
localize an object in an intermediate frame. Then, C(0,n)

i,j = 1 only if the label set for dnj includes d0i .

Artificial Detections. To improve the model’s robustness in learning visual features, we artificially
construct additional detections in In by pairing the spatial coordinates of detections in In with object
images selected randomly from frames in the underlying video data that are temporally far from
〈I0, . . . , In〉. Thus, these artificial detections added to Dn have correct spatial coordinates, but
include visual cues that do not correspond to any object in I0, and so the tracker model must learn to
leverage visual cues so that it does not assign high probabilities in M (0, n) to artificial detections.

We exclude artificial detections in the mask C. Then, to perform well under dot-product similarity,
the model must learn to leverage visual features to distinguish the correct detections in In from
artificially constructed ones — a tracker that only considers spatial features would assign half of its
probability mass along each row to artificial detections, and thus would be penalized by the loss.

4 Input-Hiding Schemes

In this section, we detail two alternative input-hiding schemes for selecting the two input variations,
denoted A(D) = 〈DA

0 , . . . , D
A
n 〉 and B(D) = 〈DB

0 , . . . , DB
n 〉. Recall that D is the original set of

all objects detected in a video sequence 〈I0, . . . , In〉. Although we only introduce two schemes, our
cross-input consistency framework is general-purpose, and there may be other input-hiding schemes
that offer comparable or better performance.

6



I
0

I
1

I
2

I
3

I
4

I
5

I
6

I
7

Tracker A

I
0

I
1

I
2

I
4

X X

I
2

I
3

I
4

I
5

I
6

I
7X X

Compare
OutputsTracker B

Figure 4: Occlusion-based hiding produces input variations with different subsequences of occluded
frames where all detections are hidden from the tracker. It also independently applies the tracker
before and after a hand-off frame (I4 and I2), and merges the outputs through the matrix product.

4.1 Visual-Spatial Hiding

Under visual-spatial hiding, we apply one tracker instance that observes only visual features and one
tracker instance that observes only spatial features: in A(D), we set x = 0, y = 0, w = 0, h = 0 for
all detections (hide all spatial information), and in B(D), we set im = 0 (hide the image content).

Training with cross-input consistency forces the model to produce similar outputs between the visual
and spatial inputs. We find that, in practice, the model naturally learns to robustly track objects,
because doing anything else would not lead to high consistency. For example, when given visual
features, the model must learn to match detections based on visual similarity in order to be consistent
with matching based on spatial proximity. Similarly, when given spatial features, the model must
learn to estimate motion across occlusion, since the visual-only instance would not have difficulty
re-localizing a visually distinctive object following frames where it was occluded.

A key issue with visual-spatial hiding is that the visual-only instance can estimate the change in
spatial coordinates of an object between two frames by comparing the background of the detection
bounding boxes of that object across the frames, similar to optical flow. This reduces performance
because the visual-only instance then learns only to process the background rather than learn a robust
embedding for contrasting distinct objects. To mitigate the issue, we make adjustments to the training
and inference procedures.

Training. We prevent the visual-only instance from focusing on background features when matching
detections in In with those in I0 by encumbering its ability to aggregate estimates of changes in
spatial coordinates across sequences of consecutive frames: although processing the background is
sufficient to compute spatial movement between detections that are in close proximity (e.g., detections
of the same object between consecutive frames), this strategy fails for detections that share no overlap.
Thus, for sufficiently large n, where objects move substantially during the sampled video sequence,
background processing is only an issue because the tracker can add up changes that it computes
between each pair of consecutive frames.

In particular, we eliminate the recurrent unit for the visual-only instance: its matching network
inputs visual features for detections in I0 and for detections in In, and scores each pair of detections
in A(0,n) without observing intermediate frames. On the other hand, we make no changes to the
spatial-only instance: it computes B(0,n) by processing 4D spatial coordinates for each detection in
every frame in the sequence, and employs both the recurrent unit and the matching network. Figure 3
illustrates the training procedure.

Inference. The separation of visual and spatial inputs, and the specialized training procedure that
we employ, imposes two challenges during inference. First, because the visual-only and spatial-
only instances observe very different inputs, we cannot expect the model to perform well when we
provide both inputs—in effect, we have trained two separate models. Second, since we eliminated
recurrent features for the visual-only instance during training, the visual-only instance is essentially a
re-identification model, and we must decide how to apply it during inference to take advantage of
multiple prior observations of a track in previous frames.

To address the first challenge, during inference, for an input video sequence 〈I0, . . . , Ik〉, we indepen-
dently compute the visual-only tracker output A(0,k) and the spatial-only tracker output B(0,k). We
then compute M (0,k) as the minimum of A(0,k) and B(0,k), and use M (0,k) to update tracks before
processing the next frame. Taking the minimum for a matching between track ti and detection dkj
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ensures that the final transition probability reflects whichever of the visual features or spatial features
that make dkj less likely to match with ti. This is desirable—for example, two red sedans visible
in the same segment of video will have high visual similarity, and we may have to leverage spatial
features to distinguish them.

The second challenge is that the visual-only tracker lacks recurrent features, and thus is only able to
compare pairs of frames. To address this, when using the visual-only tracker, for each track-detection
pair (ti, dkj ), we compute 5 scores by applying the model on dkj and 5 randomly selected images

associated with the track ti in previous frames. We then average these scores to derive A
(0,k)
i,j . This

enables the model to use context from multiple preceding frames when localizing an object in a new
frame.

4.2 Occlusion-based Hiding

We also experimented with an occlusion-based hiding scheme. Since we found that visual-spatial
hiding performs better, we introduce occlusion-based hiding only at a high level here, but include
details in the supplementary material.

Occlusion-based hiding produces the variations A(D) and B(D) by simulating random occlusion
incidents where all detections in occluded frames are eliminated from the input, i.e., if Ik is occluded
for A(D), then DA

k is empty. We only occlude intermediate frames (i.e., a frame Ik is only considered
for occlusion if 0 < k < n) so that the transition matrices still compare detections in I0 with those in
In. When processing an occluded Ik, the tracker is forced to match all tracks to the absent column
in that frame, and re-localize the tracks after the occlusion. In occlusion-based hiding, we also
incorporate an RNN hand-off method that cuts off the propagation of RNN features from I0 to In by
employing two separate RNN executions: for some handoff index 1 < h < n, we apply the model
from I0 to Ih, and separately apply the model from Ih to In, and combine the transition matrices by
taking their product. We summarize the scheme in Figure 4.

5 Evaluation

We compare our method and nine baselines on the MOT17 [21] and KITTI [10] benchmarks.

Baselines. We compare with two unsupervised methods (SORT [2] and V-IOU [4]) and seven
fully supervised methods (Tracktor++ [1], MHT-BLSTM [12], FAMNet [5], LSST [8], GSM [18],
mmMOT [29], and CenterTrack [30]). Like our approach, SORT and V-IOU require an object
detector, but do not train on any video-level bounding box and track annotations in the MOT17
and KITTI training sets. The fully supervised methods train on video-level annotations; Tracktor++
incorporates a core component that uses only the detector regression network, but requires video-level
annotations for training a re-identification network. Results for 8 baselines are available on MOT17,
and results for 4 baselines are available on KITTI.

Dataset. MOT17 [21] consists of 14 video sequences of pedestrians in a wide range of contexts,
including a moving camera inside a shopping mall and a fixed, elevated view of an outdoor plaza.
The dataset is split into 7 training sequences and 7 test sequences; each split includes approximately
11 minutes of video. KITTI [10] consists of 48 video sequences captured from vehicle-mounted
cameras, split into 20 for training and 28 for testing, and the objective is to track cars.

Training. The supervised baselines train on video-level bounding box and track annotations provided
by MOT17 and KITTI. In contrast, our method trains only on a corpus of unlabeled video. Because
video-level annotations are expensive to label, our method requires substantially less annotation time,
and thus greatly reduces the effort needed to apply multi-object tracking on new datasets.

For MOT17, we collect unlabeled video from two sources: we use five hours of video from seven
YouTube walking tours, and all train and test sequences from the PathTrack dataset [20] (we do not
use the PathTrack ground truth annotations). For KITTI, we use both the 46 minutes of video in the
KITTI dataset together with 7 hours of video from Berkeley DeepDrive [27]. We train our tracker
model on an NVIDIA Tesla V100 GPU; training time varies between 4 and 24 hours depending on
the input-hiding scheme. During training, we randomly select sequence lengths n between 4 and 16
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Method IDF1 MOTA
Occlusion (ours) 52.4 56.7
Visual-Spatial (ours) 57.3 60.2
Spatial-Only (ours) 56.5 57.8

Table 1: Ablation study on the MOT17 training set.

Method IDF1 MOTA MT ML FP FN Idsw Frag
Unsupervised Visual-Spatial (ours) 58.3 56.8 538 880 12K 231K 1K 2K

Methods SORT [2] 39.8 43.1 295 997 28K 288K 5K 7K
IOU [3] 39.4 45.5 369 953 20K 282K 6K 7K
Tracktor++ [1] 52.3 53.5 459 861 12K 248K 2K 5K
MHT-BLSTM [12] 51.9 47.5 429 981 26K 268K 2K 3K

Supervised FAMNet [5] 48.7 52.0 450 787 14K 254K 3K 5K
Methods LSST [8] 62.3 54.7 480 944 26K 228K 1K 4K

GSM [18] 57.8 56.4 523 813 14K 230K 1K 3K
CenterTrack [30] 59.6 61.5 621 752 14K 201K 3K 5K

Table 2: Performance on the MOT17 test set. We compare methods in terms of IDF1 and MOTA, but
include other non-comprehensive metrics from MOT17 as well for completeness.

Method HOTA DetA AssA DetRe DetPr AssRe AssPr LocA
Visual-Spatial (ours) 62.5 61.1 65.3 67.7 73.8 69.1 83.1 80.3
SORT [2] 42.5 44.0 41.3 47.3 73.9 42.8 83.0 80.8
FAMNet [5] 52.6 61.0 45.5 64.4 78.7 48.7 77.4 81.5
mmMOT [29] 62.1 72.3 54.0 76.2 84.9 59.0 82.4 86.6
CenterTrack [30] 73.0 75.6 71.2 80.1 84.6 73.8 89.0 86.5

Table 3: Performance on the KITTI test set (tracking cars). We show unsupervised methods, including
our approach, at the top, and methods that require video-level annotations at the bottom. We use HOTA
to compare methods, but include other non-comprehensive metrics from KITTI for completeness.

frames, and apply stochastic gradient descent one sequence at a time. We apply the Adam optimizer
with learning rate 0.0001, decaying to 0.00001 after plateau.

In contrast to MOT17, KITTI does not provide object detections for use by tracking methods. We
extract detections from video using a YOLOv5 model trained on COCO. On MOT17, we pre-process
the provided Deformable Parts Model, Faster R-CNN, and Scale-Dependent Pooling detections with
classification and regression following the pre-processing method in Tracktor++ [1].

Metrics. We use Multi-Object Tracking Accuracy (MOTA) [21] and ID F1 Score (IDF1) [22] on
MOT17, and Higher Order Tracking Accuracy (HOTA) [19] for KITTI. Broadly, these comprehensive
metrics measure the accuracy of inferred tracks against ground truth tracks, and penalize both when
an inferred track contains a detection that doesn’t match to some ground truth detection (or vice
versa), and when a ground truth track is split into two or more inferred tracks (or vice versa). MOT17
and KITTI employ several other non-comprehensive metrics, many of which are used to compute
MOTA, IDF1, and HOTA; we report these for completeness.

Ablation Study. We first compare occlusion-based hiding and visual-spatial hiding on the MOT17
training set in Table 1. Visual-spatial hiding yields higher performance on both MOTA and IDF1 —
because objects are often visible in the video for only a short duration, when training under occlusion-
based hiding, the model is unable to learn to re-localize objects over simulated occlusions since the
simulated occlusion must then also be short. Under Spatial-Only, we show results for visual-spatial
hiding when inputting only the spatial coordinates of detections during inference (no image features).
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Figure 5: Output of Visual-Spatial on a portion of an MOT17 sequence. Our method tracks objects
through several instances of occlusion.

Quantitative Results. Table 2 shows results on the MOT17 test set1, and Table 3 shows results on
the KITTI test set2. Metrics are automatically computed by the challenge websites. Per the challenge
policies, we only submit the best method, and thus show Visual-Spatial performance.

On MOT17, our approach substantially outperforms both of the unsupervised baselines. Moreover,
despite training only on unlabeled video, our method outperforms Tracktor++ [1], MHT-BLSTM [12],
FAMNet [5], and GSM [18], even though these baselines (all of which except MHT-BLSTM were
published in the last 1–2 years) are supervised methods that train on expensive video-level annotations
in the MOT17 training set. Our approach is also competitive with LSST [8], yielding higher MOTA
but lower IDF1. Nevertheless, CenterTrack [30] yields slightly higher accuracy on both metrics.

Similarly, on KITTI, our approach outperforms SORT [2], FAMNet [5], and mmMOT [29], but yields
lower performance than CenterTrack [30].

Qualitative Results. We show qualitative results in Figure 5.

Additional Experiments. In the supplementary material, we report results for five additional
experiments, where we compare MOTA on the MOT17 training set when various experimental
parameters are changed, including detector accuracy, unlabeled video corpus size, and the training
example sequence length n.

6 Conclusion

In this paper, we have shown that a robust, fully unsupervised multi-object tracker can be trained
through a novel self-supervisory learning signal, cross-input consistency, that enforces consistency in
the tracking outputs across different input variations of one video sequence. Despite training only on
unlabeled video, our approach outperforms four supervised trackers published in the last 1–2 years
(Tracktor++ [1], FAMNet [5], GSM [18], and mmMOT [29]), which train on expensive video-level
bounding box and track annotations.

Social Impact. By enabling a robust multi-object tracker to be trained given only unlabeled video,
our work promises to greatly reduce the effort for users to apply multi-object tracking on new datasets
without sacrificing accuracy. Thus, we believe that our novel self-supervised MOT method can open
up new video analytics tasks that were previously too costly. This impact may be positive or negative
depending on the nature of these tasks — however, in general, we believe that tasks with greater
potential for negative impact such as surveillance and pedestrian tracking would not benefit from the
reduction in annotation cost associated with our method.

Funding Transparency Statement. This research was supported in part by the Qatar Computing
Research Institute (QCRI).

1These results are taken from https://motchallenge.net/results/MOT17/, where our method is
denoted UNS20regress. Baselines are denoted SORT17, IOU17, Tracktor++, MHT_bLSTM, FAMNet, LSST17,
GSM_Tracktor, and CTTrackPub.

2These results are taken from http://www.cvlibs.net/datasets/kitti/eval_tracking.php.

10

https://motchallenge.net/results/MOT17/
http://www.cvlibs.net/datasets/kitti/eval_tracking.php


References
[1] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe. Tracking without bells and whistles.

In IEEE International Conference on Computer Vision (ICCV), 2019.

[2] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple Online and
Realtime Tracking. In IEEE International Conference on Image Processing (ICIP), 2016.

[3] Erik Bochinski, Volker Eiselein, and Thomas Sikora. High-Speed Tracking-by-Detection
Without Using Image Information. In IEEE International Conference on Advanced Video and
Signal Based Surveillance (AVSS), 2017.

[4] Erik Bochinski, Tobias Senst, and Thomas Sikora. Extending IOU Based Multi-Object Tracking
by Visual Information. In IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS), 2018.

[5] Peng Chu and Haibin Ling. FAMNet: Joint Learning of Feature, Affinity and Multi-dimensional
Assignment for Online Multiple Object Tracking. In IEEE International Conference on Com-
puter Vision (ICCV), 2019.

[6] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised Visual Representation
Learning by Context Prediction. In IEEE International Conference on Computer Vision (ICCV),
2015.

[7] Carl Doersch and Andrew Zisserman. Multi-task Self-Supervised Visual Learning. In IEEE
International Conference on Computer Vision (ICCV), 2017.

[8] Weitao Feng, Zhihao Hu, Wei Wu, Junjie Yan, and Wanli Ouyang. Multi-object tracking with
multiple cues and switcher-aware classification. arXiv preprint arXiv:1901.06129, 2019.

[9] Basura Fernando, Hakan Bilen, Efstratios Gavves, and Stephen Gould. Self-supervised video
representation learning with odd-one-out networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

[10] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?
The KITTI Vision Benchmark Suite. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[11] Shyamgopal Karthik, Ameya Prabhu, and Vineet Gandhi. Simple unsupervised multi-object
tracking. CoRR, abs/2006.02609, 2020.

[12] Chanho Kim, Fuxin Li, and James M. Rehg. Multi-Object Tracking with Neural Gating using
Bilinear LSTM. In European Conference on Computer Vision (ECCV), 2018.

[13] Zihang Lai, Erika Lu, and Weidi Xie. Mast: A memory-augmented self-supervised tracker. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2020.

[14] Laura Leal-Taixé, Anton Milan, Ian Reid, Stefan Roth, and Konrad Schindler. MOTChallenge
2015: Towards a Benchmark for Multi-Target Tracking. arXiv preprint arXiv:1504.01942,
2015.

[15] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-Hsuan Yang. Unsupervised represen-
tation learning by sorting sequences. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), Oct 2017.

[16] Xueting Li, Sifei Liu, Shalini De Mello, Xiaolong Wang, Jan Kautz, and Ming-Hsuan Yang.
Joint-task self-supervised learning for temporal correspondence. In Advances in Neural Infor-
mation Processing Systems, volume 32, 2019.

[17] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common Objects in Context. In
European Conference on Computer Vision (ECCV), 2014.

11



[18] Qiankun Liu, Qi Chu, Bin Liu, and Nenghai Yu. GSM: Graph Similarity Model for Multi-Object
Tracking. In International Joint Conference on Artificial Intelligence (IJCAI), 2020.

[19] Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip Torr, Andreas Geiger, Laura Leal-Taixé,
and Bastian Leibe. HOTA: A Higher Order Metric for Evaluating Multi-Object Tracking.
International Journal of Computer Vision, 129(2):548–578, 2021.

[20] Santiago Manen, Michael Gygli, Dengxin Dai, and Luc Van Gool. PathTrack: Fast Trajectory
Annotation with Path Supervision. In IEEE International Conference on Computer Vision
(ICCV), 2017.

[21] Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler. MOT16: A
Benchmark for Multi-Object Tracking. arXiv preprint arXiv:1603.00831, 2016.

[22] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara, and Carlo Tomasi. Performance
Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In European Conference on
Computer Vision (ECCV), 2016.

[23] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised Learning of Video
Representations using LSTMs. In International Conference on Machine Learning (ICML),
2015.

[24] Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio Guadarrama, and Kevin Murphy.
Tracking Emerges by Colorizing Videos. In European Conference on Computer Vision (ECCV),
2018.

[25] Xiaolong Wang, Allan Jabri, and Alexei A Efros. Learning Correspondence from the Cycle-
Consistency of Time. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2019.

[26] Donglai Wei, Joseph J. Lim, Andrew Zisserman, and William T. Freeman. Learning and using
the arrow of time. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[27] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. End-to-end learning of driving models
from large-scale video datasets. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

[28] Jenny Yuen, Bryan Russell, Ce Liu, and Antonio Torralba. LabelMe video: Building a Video
Database with Human Annotations. In IEEE International Conference on Computer Vision
(ICCV), 2009.

[29] Wenwei Zhang, Hui Zhou, Shuyang Sun, Zhe Wang, Jianping Shi, and Chen Change Loy.
Robust multi-modality multi-object tracking. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019.

[30] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Tracking Objects as Points. In European
Conference on Computer Vision (ECCV), 2020.

12



Self-Supervised Multi-Object Tracking with Cross-Input Consistency
(Supplementary Material)

Favyen Bastani, Songtao He, Sam Madden

In this appendix, we detail occlusion-based hiding, and
also include results for five additional experiments:

1. Varying Detector Performance (Training): MOTA on
MOT17 when using detectors of varying performance
during self-supervised training of our tracker model.

2. Varying Detector Performance (Inference): MOTA
when using detectors of varying performance during in-
ference, with the same tracker model parameters.

3. Varying Unlabeled Video Dataset Size: MOTA when
self-supervised learning is conducted on video datasets
of varying size.

4. Varying Sequence Length: adjusting the length of video
sequences that are sampled on each training step.

5. Randomly Initialized Model: comparing performance of
our approach against a randomly initialized model.

1 Occlusion-based Hiding
At a high level, occlusion-based hiding produces the varia-
tions A(D) and B(D) by simulating random occlusion inci-
dents where all detections in occluded frames are eliminated
from the input, i.e., if Ik is occluded for A(D), then DA

k is
empty. We only occlude intermediate frames (i.e., a frame Ik
is only considered for occlusion if 0 < k < n) so that the
transition matrices still compare detections in I0 with those
in In. When processing an occluded Ik, the tracker is forced
to match all tracks to the absent column in that frame, and
re-localize the tracks after the occlusion.

We first introduce two schemes that do not work in isola-
tion, and then show that we can combine these schemes to
produce input variations that result in effective training.
Only-Occlusion. For each training sequence 〈I0, . . . , In〉,
Only-Occlusion randomly selects four indexes 0 < k1 ≤
k2 < k3 ≤ k4 < n to construct two disjoint frame subse-
quences 〈Ik1 , . . . , Ik2〉 and 〈Ik3 , . . . , Ik4〉. In A(D), we oc-
clude each frame Ik such that k1 ≤ k ≤ k2, and in B(D), we
occlude Ik if k3 ≤ k ≤ k4.

When training under Only-Occlusion, the tracker is forced
to leverage track features computed through the RNN to re-
localize tracks after each simulated occlusion ends. Learn-
ing to merely compare detection features across consecu-
tive frames would yield low accuracy since features in oc-
cluded frames are not observed. Furthermore, because one

tracker observes the detections and the other tracker does
not, the model must make similar tracking decisions when re-
localizing across occluded frames as it does when observing
detections in each frame.

However, in practice, Only-Occlusion yields a model that
simply memorizes detections in I0, and computes A(0,n) and
B(0,n) by comparing detections in In against memorized de-
tections. This strategy yields high consistency because it is
unaffected by occluded intermediate frames. Thus, to make
this scheme effective, we must prevent the propagation of fea-
tures directly from I0 to In.
RNN Hand-off. RNN Hand-off prevents simple memoriza-
tion by cutting off the propagation of RNN features through
the application of two separate RNN executions. We se-
lect two indexes 0 < k5, k6 < n. Instead of computing
A(0,n) directly, we first apply the tracker on the frame se-
quence 〈I0, . . . , Ik5

〉 to derive a transition matrix A(0,k5) that
matches detections in I0 with detections in Ik5

. We then inde-
pendently apply the tracker on 〈Ik5

, . . . , In〉 to derive another
matrix A(k5,n) that matches detections in Ik5 with detections
in In. We combine these matrices through the matrix prod-
uct to compute A(0,n): we compute A(0,n) = A(0,k5)A(k5,n).
Similarly, we compute B(0,n) = B(0,k6)B(k6,n).

This scheme forces the tracker to find the same unique de-
tection in Ik5

(and Ik6
) for two detections of the same object

in I0 and In in order to maximize similarity between the ma-
trix products. However, a tracker that learns to match tracks
to detections by comparing only the detection features in con-
secutive frames will exhibit high similarity between A(0,n)

and B(0,n) under this scheme.
Combined Scheme. Only-Occlusion and RNN Hand-off
have opposite advantages and drawbacks. Thus, we combine
these in our occlusion-based hiding scheme. We first select
the two sequences for simulated occlusion, 〈Ik1 , . . . , Ik2〉 and
〈Ik3

, . . . , Ik4
〉. Then, we randomly pick k5 and k6 such that

k3 ≤ k5 ≤ k4 and k1 ≤ k6 ≤ k2, i.e., the hand-off for one
tracker occurs when the other tracker observes a simulated
occlusion.

Under this scheme, neither memorizing features in I0 nor
comparing detections solely in a pairwise frame-by-frame
manner is an effective tracking strategy. Instead, the tracker
must learn to leverage RNN features for re-localizing across
simulated occlusion, while still ensuring the tracking deci-



sions reflect intermediate outputs.

2 Varying Detector Performance (Training)
First, we consider the impact of the object detection model
that we employ during self-supervised training on the robust-
ness of the resulting tracker model. We do not vary the de-
tector during inference – instead, we always use the same
MOT17 SDP detector. We expect that using a detector model
that most closely reflects the detections that will be seen dur-
ing inference will maximize MOTA; however, the parameters
for the MOT17 detectors are not available.

To vary detector performance, during tracker training, we
vary the input resolution for a Mask R-CNN model trained
on COCO from 1024x576 to 448x256. At each resolution,
we measure the mAP score each detector achieves over the
MOT17 training set frames to validate that we are testing a
substantial range of detector accuracy levels. We train our
tracker model under visual-spatial hiding using each of the
detector resolutions. Finally, we compute the MOTA when
applying each trained model on the MOT17 training set, using
the SDP detections included in the MOT17 dataset.

Resolution Detector mAP Visual-Spatial MOTA
1024x576 0.32 60.2%
832x448 0.29 59.5%
640x360 0.26 59.7%
448x256 0.18 59.3%

The table above shows the results. The detector provides
higher accuracy at higher resolutions. Thus, the results sug-
gest that there is a weak correlation between detector perfor-
mance and resulting tracker accuracy. We hypothesize that
this is in large part because the higher accuracy detections
also correspond more closely with the MOT17 SDP detector.

3 Varying Detector Performance (Inference)
We also compare the performance of our tracker model
trained under visual-spatial hiding when varying detector per-
formance during inference, but keeping constant the detector
used for self-supervised training. To do so, we simply re-
port the MOTA achieved on the MOT17 training set under
each of the object detectors included in the MOT17 dataset;
ordered from lowest-accuracy to highest-accuracy, these are
Deformable Parts Model (DPM), Faster R-CNN (FRCNN),
and Scale-Dependent Pooling (SDP).

DPM FRCNN SDP
MOTA 45.2 46.1 48.0

MOTA increases with detector accuracy.

4 Varying Unlabeled Video Dataset Size
We now consider the impact of the amount of unlabeled video
(which we use during self-supervised training of the tracker
model) on the robustness of the resulting tracker model. Note
that unlabeled video can be cheaply obtained since no man-
ual annotation is required to collect it. We vary the amount
of unlabeled video by using 100%, 25%, 15%, and 5% of the
PathTrack corpus (which totals 2.9 hours of video); we do
not use the labels in PathTrack. We then compute the MOTA

when applying each model, trained under visual-spatial hid-
ing, on the MOT17 training set.

Unlabeled Video Percentage MOTA
100% 59.2%
25% 58.3%
15% 57.3%
5% 56.3%

The tracker performance rapidly deteriorates as the amount
of unlabeled video is reduced. At 5% of the PathTrack corpus
(9 minutes of video), the performance of our tracker model is
similar to the performance of SORT, which only uses spa-
tial features (bounding box coordinates). This suggests that,
when training with only 9 minutes of video, our method is
able to learn to use spatial cues for tracking objects, but does
not have sufficient training data to learn to leverage visual
cues.

5 Varying Sequence Length n

Below, we report MOTA on the MOT17 training set of a
model trained under visual-spatial hiding using varying se-
quence lengths. We also report the accuracy when the se-
quence length n is randomly sampled from a set of multiple
options on each training example.

Sequence Length(s) MOTA
2 62.2%
4 60.2%
8 62.1%
16 62.0%
32 61.5%
4, 8, 16, 32 62.1%

Tracker performance is not very sensitive to the sequence
length.

6 Randomly Initialized Model
To highlight the degree to which self-supervised learning im-
proves performance over a randomly initialized model, we
compare the performance of our method on the MOT17 train-
ing set against such a baseline. In the baseline, since a
randomly initialized matching network will not effectively
compare image and spatial features, we opt to eliminate the
matching network and replace it with an L2 distance function
between bounding box coordinates or extracted image fea-
tures. It achieves -76.4% MOTA (negative MOTA) and 2.8%
IDF1, suggesting that random initialization is not at all effec-
tive, and that our cross-input consistency approach elevates
performance.
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