
Vaas: Video Analytics At Scale

Favyen Bastani
MIT CSAIL

favyen@csail.mit.edu

Oscar Moll
MIT CSAIL

orm@csail.mit.edu

Sam Madden
MIT CSAIL

madden@csail.mit.edu

ABSTRACT
We demonstrate Vaas, a video analytics system for large-
scale datasets. Vaas provides an interactive interface to
rapidly develop and experiment with different workflows for
solving a video analytics task. Users express these workflows
as Vaas queries, which specify data flow graphs where nodes
may be implemented by machine learning models, custom
code, or basic built-in operations (e.g., cropping, selecting
detections of by class, filtering tracks by bounding boxes).
For example, the problem of detecting lane change events in
dashboard camera video could be solved directly as an activ-
ity recognition task, by training a model to classify whether
a segment of video contains a lane change, or decomposed
into a set of simpler tasks, such as detecting lane markers
and then identifying shifts in the detected lanes. Our sys-
tem interface incorporates a query composition tool, where
users can rapidly compose operations to implement a work-
flow, and an exploration tool, where users can experiment
with a query by applying it over samples from the dataset
to fix bugs and tune parameters. Vaas incorporates recent
work in approximate video query processing to support the
fast, interactive execution of queries, and accelerates the an-
notation process of hand-labeling examples to train models
by allowing users to annotate over the outputs of previously
expressed queries rather than the entire video dataset.

PVLDB Reference Format:
Favyen Bastani, Oscar Moll, Sam Madden. Vaas: Video Analyt-
ics At Scale. PVLDB, 13(12): 2877-2880, 2020.
DOI: https://doi.org/10.14778/3415478.3415498

1. INTRODUCTION
Video data today is collected in vast quantities by cam-

eras in a diverse range of settings, including traffic cam-
eras, aerial drones, mobile phones, and dashboard cameras
and semi-autonomous vehicles. Video analytics can provide
enormous benefits to many applications: video of roads and
junctions can inform traffic planning decisions [1], video cap-
tured from motor vehicles can provide insights into driving

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415498

behavior [2], and videos shared publicly can indicate trends
in online communities [3].

However, the unstructured nature of video results in two
substantial costs in video analytics: the development cost
of implementing analytics workflows (including both hand-
labeling data for training machine learning models, and de-
veloping the data processing pipeline that incorporates those
models), and the query execution cost to apply those mod-
els over large video datasets. Oftentimes, the enormity of
these costs makes it unclear how to even begin performing
an analytics task. For example, suppose a traffic planning
analyst wishes to find segments of traffic camera video where
a car runs a red light. Directly annotating these instances as
an activity recognition problem, where a classifier is trained
over segments of video, likely makes the task intractable,
as it may involve manually watching hours of video to la-
bel just one run-red-light instance. Similarly, achieving high
recognition accuracy likely involves training a deep neural
network, and applying such a model on thousands of hours
of video is expensive.

To address these challenges, we demonstrate Vaas, a sys-
tem for video analytics at scale. Vaas provides an interactive
interface that enables users to efficiently explore different
approaches to solve an analytics task. Additionally, Vaas
incorporates recent work in approximate video query pro-
cessing techniques, including probabilistic predicates [4, 5,
6] and variable framerate tracking [7], as well as an incre-
mental query execution architecture, to ensure that interface
interactions are fast and to rapidly execute queries over en-
tire video datasets once users finalize their queries.

Vaas queries are data flow graphs that define multi-stage
execution pipelines. Nodes in a data flow graph may be
models, which learn parameters from hand-labeled exam-
ples, or Python functions, which can inspect video directly
or operate over the outputs of models or other functions.
This architecture allows the flexible expression of hybrid
queries that combine models with code to solve an analyt-
ics task with minimal effort. In the example run-red-light
task, an analyst may decide to split up the task into two
components: find cars that pass straight through a junc-
tion in a certain direction, and identify times when a light
that controls traffic in that direction is red. For the first
component, the analyst may leverage a pre-trained object
detection model to detect cars, and a heuristic multi-object
tracker to compute the trajectories of cars through video.
Then, the analyst can program a function that inputs the
car tracks, and selects only the tracks that correspond to the
direction of interest. For the second component, the analyst



Video

Detect Cars

Object Tracker

Select Tracks

Crop

Classify Light

0 0
01

And

Figure 1: An example data flow graph for selecting
cars that run a red light.

may begin by cropping the video to extract a small window
around a traffic light. The analyst may then attempt to
program a function that directly inputs the cropped video
and processes the per-pixel hues to estimate the traffic light
state. However, doing so may require substantial effort to
ensure the processing is accurate at different times of day
across the traffic camera dataset, and so the analyst may
find it faster to simply annotate the light state of several
randomly sampled cropped video frames and train a classi-
fication model on the annotations. Finally, the analyst can
program a function to input the selected car tracks and in-
ferred light states, and output cars that run red lights by
only selecting tracks where the light state is red for the du-
ration of the track. We show the data flow graph for this
example in Figure 1.

We demonstrate Vaas by applying it on various analytics
tasks, including tasks over dashcam video in the Berkeley
DeepDrive dataset [8] and over traffic camera footage in the
YTStream dataset [7].

2. SYSTEM INTERFACE
We show the Vaas system interface in Figure 2. The in-

terface consists of three tools: the annotation tool (Section
2.2) focuses on supporting the hand-labeling of video data
for training machine learning models; the query composi-
tion tool (Section 2.3) enables users to express a particular
approach for solving an analytics task (i.e., a Vaas query);
and the exploration tool (Section 2.4) enables users to ex-
periment with and improve their analytics workflow imple-
mentations.

2.1 Data Types
In general, video analytics may involve several data types.

The run-red-light example involved cropping video, process-
ing car tracks, and classifying traffic light states. Vaas sup-
ports four data types:

• Video: represents not only video from the underlying
dataset being analyzed, but also intermediate segmen-
tation and other image-based model outputs.

• Detections: represents object detections, e.g., bound-
ing boxes of cars detected in video. Detections are ex-
tracted in individual video frames, and may be bound-
ing boxes, points, lines, or polygons.

• Tracks: represents sequences of detections correspond-
ing to the same object instance, e.g., the trajectory of
a car through the camera frame over the segment of
video in which it is visible.

• Classes: represents classifier outputs, for both image
classification tasks (select frames that contain ambu-
lances) and activity recognition tasks (select video seg-
ments where cars run red lights).

Vaas represents data as time series, where each timestep
is a video frame. For example, detection and track data
associate a list of detections with each frame.

2.2 Annotation
The annotation tool enables efficient hand-labeling of de-

tections, tracks, and classes in video. Users can export their
annotations to standard formats for training object detec-
tors, object classifiers, image classifiers, and activity recog-
nition models. The trained models can then be linked back
into Vaas so that they can be used as a node in a data flow
graph. Detections and tracks are labeled through a click-
based interface, where users draw shapes overlayed on video
frames. Classes are labeled through a button-based inter-
face, and class annotations may be labeled over individual
frames (image classification) or over video segments (activ-
ity recognition).

Oftentimes, though, users are interested in rare events
that are tedious to annotate. For example, a driving be-
havior researcher may be interested in finding segments of
dashcam video where another car overtakes the recording
car and suddenly brakes. These overtake-and-brake events
likely happen infrequently; thus, if the annotation tool pro-
vides examples for labeling by uniformly sampling video seg-
ments from the entire video dataset, it may take a long time
to label even one positive example.

Instead, Vaas supports performing annotation in the con-
text of a query: rather than label all video, if the user can
express a low-precision, high-recall query that approximates
their analytics task, then the user can opt to focus annota-
tion on segments of video where this query produces posi-
tive outputs. For overtake-and-brake events, the user may
leverage a car detector and tracker to express a query that
selects car tracks that begin on the leftmost portion of the
camera frame, and end in the middle. This corresponds to
a car overtaking on the left, and most overtake-and-brake
events likely satisfy the query (high-recall). On the other
hand, there may be other situations, such as cars passing
without changing into the recording car’s lane, that also



Figure 2: The Vaas system interface. At top-left, the query composition tool enables users to compose
machine learning models, custom code, and built-in operations to implement analytics workflows. At top-
right, we show the editor for a node using the built-in crop operation. At bottom, we show the exploration
tool, where users can interactively experiment with their queries and visualize the query outputs; here, Vaas
renders four videos for the executed query.

satisfy the query (low-precision), so the query does not fully
solve the analytics task. Nevertheless, the user can initialize
the Vaas annotation tool under this query to accelerate the
hand-labeling process: the frequency of overtake-and-brake
events is far higher over the query outputs than when sam-
pling uniformly across the dashcam dataset. After training
an activity recognition model on the annotations, the user
can revise their query to apply a logical conjunction (AND)
of their original query and the model.

2.3 Composition
The query composition tool enables users to rapidly im-

plement various analytics workflows. A query specifies a
directed acyclic graph, where source nodes correspond to
the underlying video dataset, and information trickles down
to one or more sink nodes (Figure 1) that Vaas outputs
to disk. Each non-source node may be implemented by a
machine learning model, custom Python code, or a built-in
operation.

To make it easier for users to incorporate models into a
workflow, Vaas provides a library of built-in models, but
users may link their own models if desired. When using
built-in models, which include YOLOv3 and a shallow clas-
sification CNN, users can either directly apply a model pre-
trained on COCO or ImageNet, or fine-tune the model on
their own set of annotations. Models typically input raw
video, but may also input data computed through other
nodes, such as object tracks. Similarly, models are often
deep neural networks, but (especially on non-video inputs)
can use other techniques such as support vector machine,
nearest neighbor classification, and logistic regression.

Custom Python code consists of Python functions that
can take inputs from one or more other nodes, and can

be implemented directly in the composition interface. Vaas
provides a Python library to make it easy for users to express
a diverse range of queries. For example, the library provides
functions to reason about spatial and temporal constraints
relevant to detections, tracks, and classification outputs.

2.4 Exploration
Users can experiment with queries by interactively eval-

uating their outputs through the exploration tool: when a
user wishes to test a query, Vaas populates a scrollable inter-
face with outputs of the query by executing it incrementally
over the video dataset. In the interface, users can visualize
different data types; for example, for tracks, Vaas by default
displays bounding boxes in output tracks overlayed on the
underlying video data, with distinct instances shown in dif-
ferent colors. Thus, if a query is not working as expected, the
user can debug the issue using the video outputs rendered by
the exploration tool, and revise the query in the composition
tool. Once a user is satisfied with the query’s performance,
the query can be executed over the entire dataset.

3. QUERY EXECUTION ENGINE
We show the architecture of the Vaas query execution

engine in Figure 3. Approximate query processing (AQP)
optimizations are implemented as plugins in the execution
engine, and Vaas automatically selects a subset of optimiza-
tions to apply for a given query. Additionally, when Vaas
ingests a video, it lazily produces copies of the video at re-
duced resolutions and framerates; Vaas may apply models
required as inputs to the query, or auxiliary models trained
by AQP optimizations, over these copies to avoid expensive
repeated decoding of the original full-resolution video.



System
Interface

Task
Manager

AQP Plugins
Probabilistic
Predicates

Execution Engine

Variable Frame-
rate Tracking

Storage Layer

Figure 3: Vaas system architecture. The system
interface submits interactive queries directly to the
execution engine, while queries over full datasets are
scheduled by the task manager.

3.1 Approximate Query Processing
Vaas incorporates two recent approximate query process-

ing techniques to accelerate query execution.

Probabilistic predicates [4, 5, 6]. This optimization
trains a fast, weak classifier to approximate outputs on im-
age classification and activity recognition tasks, and applies
the classifier as a low-precision, high-recall filter. Initially,
rather than apply the full execution pipeline specified by
the query, we apply the weak classifier and collect its con-
fidence scores across segments of the video dataset. If the
confidence score is sufficiently small in a segment, we prune
the segment without further processing. We apply the full
pipeline in the remaining segments to ensure high precision
in the query outputs.

Vaas performs validation in randomly sampled video seg-
ments to automatically determine the type of classifier to
train (e.g., support vector machine, or shallow neural net-
work), the confidence threshold for pruning, and the input
resolution.

Variable framerate tracking [7]. This optimization ad-
dresses queries involving object tracks. Instead of perform-
ing tracking at the full video framerate, we track objects at
substantially reduced framerates when doing so only neg-
ligibly impairs accuracy. The execution engine automati-
cally increases the framerate at which it samples video when
needed to maintain high-accuracy, such as in busier seg-
ments of video where there is a higher density of object
instances.

3.2 Storage
The storage layer maintains data produced during query

execution that may be re-used in other analytics tasks. This
includes copies of video at reduced resolutions and framer-
ates, and also the outputs of intermediate models used in
a query. Vaas accounts for data already populated in the

storage system when developing an execution plan for a new
query over an existing dataset.

4. DEMONSTRATION SCENARIOS
We demonstrate Vaas on several analytics tasks over two

video sources. First, over dashcam video in the Berkeley
DeepDrive dataset [8], tasks include detecting overtake-and-
brake events, detecting instances when the recording car
changes lanes, and detecting situations not labeled in typi-
cal object detection datasets such as camera glare and con-
struction zones. Second, over traffic camera video in the
YTStream dataset [7], tasks include counting left-turning
cars, finding cars that run red lights, and finding cars that
stop in the crosswalk.

5. REFERENCES
[1] Zheng Tang, Milind Naphade, Ming-Yu Liu, Xiaodong

Yang, Stan Birchfield, Shuo Wang, Ratnesh Kumar,
David Anastasiu, and Jenq-Neng Hwang. CityFlow: A
City-Scale Benchmark for Multi-Target Multi-Camera
Vehicle Tracking and Re-Identification. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 8797–8806, 2019.

[2] Lex Fridman, Daniel E Brown, Michael Glazer, William
Angell, Spencer Dodd, Benedikt Jenik, Jack
Terwilliger, Aleksandr Patsekin, Julia Kindelsberger,
Li Ding, et al. MIT Advanced Vehicle Technology
Study: Large-Scale Naturalistic Driving Study of
Driver Behavior and Interaction with Automation.
IEEE Access, 7:102021–102038, 2019.

[3] Yu-Han Tiffany Chen. Interactive Object Recognition
and Search over Mobile Video. PhD thesis,
Massachusetts Institute of Technology, 2017.

[4] Daniel Kang, John Emmons, Firas Abuzaid, Peter
Bailis, and Matei Zaharia. NoScope: Optimizing Neural
Network Queries over Video at Scale. In PVLDB,
10(11):1586–1597, 2017.

[5] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and
Surajit Chaudhuri. Accelerating Machine Learning
Inference with Probabilistic Predicates. In
International Conference on Management of Data
(SIGMOD), pages 1493–1508. ACM, 2018.

[6] Daniel Kang, Peter Bailis, and Matei Zaharia.
Challenges and Opportunities in DNN-Based Video
Analytics: A Demonstration of the BlazeIt Video
Query Engine. In Conference on Innovative Data
Systems Research (CIDR), 2019.

[7] Favyen Bastani, Songtao He, Arjun Balasingam,
Karthik Gopalakrishnan, Mohammad Alizadeh, Hari
Balakrishnan, Michael Cafarella, Tim Kraska, and Sam
Madden. MIRIS: Fast Object Track Queries in Video.
In International Conference on Management of Data
(SIGMOD), 2020.

[8] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell.
End-to-end Learning of Driving Models from
Large-scale Video Datasets. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 2174–2182, 2017.


